I remember watching papa flammy evaluate this integral a couple years ago but your solution is much more elegant!
@maths_505 Жыл бұрын
Pinning this so that flammy knows he sucks🤣🤣🤣
@Qrudi234 Жыл бұрын
@@maths_505real
@machickenjoy3202Ай бұрын
@PapaFlammy69
@manstuckinabox3679 Жыл бұрын
13:31 surely, you must be joking Mr.Feynman! Plot twist, he wasn't joking, and don't call him Sherley.
@maths_505 Жыл бұрын
😂😂😂 Jokes aside t->1/t is one hell of a transformation
@manstuckinabox3679 Жыл бұрын
@@maths_505 IKR! I always watch watching these kind of "monstrous" integrals due to learning techniques like this particular one, or weistrauss' sub and so on and so forth...
@Rando21015 ай бұрын
Yeah, that'll Sherley work.
@skyethebi Жыл бұрын
5:45 couldn’t you just use t = 0 in which case the integral collapses to 0 rather than calculating the limit as t approaches infinity
@megauser851211 ай бұрын
I don't know about that honestly, since you also end up with I(inf) within the I sub 1 that he had there, because of the inverse tangent at x = 1 making you have that inverse tangent of a function of t leftover within I sub 1.
@trelosyiaellinikaАй бұрын
Indeed elegant! Not QUITE but VERY!
@pacman7168 Жыл бұрын
Cheers from Caracas Venezuela how it call the application which you use for this video? Thanks in advance
@zahari20 Жыл бұрын
By the way, Ahmed is pronounced with a hard "h", Akhmed.
@volsyb Жыл бұрын
.😊.
@maalikserebryakov Жыл бұрын
احمد Did i “pronounce” it correctly?
@erivaldolopes632 Жыл бұрын
Why using the parameter trick setting t=infinity when you could set t=0 and avoid calculating that nasty integral?!
@thomasblackwell9507 Жыл бұрын
Your handwriting is not bad; mine is so bad that my chickens cannot even read it!
@nightmareintegral5593 Жыл бұрын
Now COXETER! 😂 Beautiful as always💚 But… What about Hankel Contour? You wanted to do that…
@maths_505 Жыл бұрын
Hankel contour = next week Coexter = gonna knock me into next week
@Stopinvadingmyhardware Жыл бұрын
We solved that in Calc 2
@ガアラ-h3h Жыл бұрын
What Uni ?
@Stopinvadingmyhardware Жыл бұрын
@@ガアラ-h3h that was Community College
@minhnguyen1338 Жыл бұрын
I'm really like you video when I use integration by parts I got this integral: int from 0 to 1/sqrt(2) of (x * arctan(x/sqrt(x^2+1)))/((2x^2+3)sqrt(x^2+1)) the answer is pi^2/(288*sqrt(2)) can you help me this Integral without using/knowing the orginal integral Thank you