Extremely clear and covers all the basics. The best gentle introduction to algebraic structures I've been able to find!
@arify73447 жыл бұрын
Good luck in your Algebra exams, fellow students
@ArifYunando5 жыл бұрын
Hello Arif
@its_roggy4 жыл бұрын
Thanks, we have one tomorrow
@imcloudy19093 жыл бұрын
Y am I doing this in year 9...?
@daytonrowen45153 жыл бұрын
i know it is quite off topic but does anyone know a good site to stream newly released movies online?
@supongmenwalling53183 жыл бұрын
I failed...ooooooo😭🤣
@nadaabdulla75564 жыл бұрын
I finished the course 2 years ago, I didn't understand it then, but now I'm interested and regret that I didn't do my best :(
@hermanaksom5303Ай бұрын
No doubts, it is the best introduction to the subject I ve ever seen
@johntryl80092 жыл бұрын
The example of Z mod n (when n=prime) being a field and not a ring is the coolest thing ever. Furthermore, your explanation of why complex numbers are a vector space made things finally click ... it has scalar multiplication and it has addition, but it just has even more properties. This was so helpful. Thank you for being super approachable and clear!
@shivanya816Ай бұрын
heyy how come... Z mod n is a field but not a ring? isnt a field a commutative ring? please clarify 😊
@plaustrarius6 жыл бұрын
cannot thank you enough for this video!!
@mcmoodoo11 ай бұрын
Absolute Gold! Thank you, sir!
@orang19212 ай бұрын
Imagine a student in Algebra I or Pre-Algebra finding this video ... RIP Also great video
@lamalamalex Жыл бұрын
I do agree with you that you built up according to complexity of the structures. With vector spaces appropriately at the end. So that’s why I find it very strange that that’s where we start students at. Linear algebra being such an early class students takes. It can even be taken before a multi variable calculus course.
@anantrelan40716 жыл бұрын
@12:01 Field is a ring with two operations . @18:12 F is a Field under (only) Multiplication . Q. Why is there only 1 operation for the field F at @18:12 ? Thanks
@HamblinMath6 жыл бұрын
A field always has two operations, addition and multiplication. I'm distinguishing the field multiplication (scalar times scalar) from "scalar multiplication" (scalar times vector).
@anantrelan40716 жыл бұрын
@@HamblinMath oh ok Thanks for the Reply !!
@leylaalkan66306 жыл бұрын
Thanks for these amazing clarifications.
@rithikseth14046 жыл бұрын
Thanks very helpful for my engineering studies ....
@clu5ter8926 жыл бұрын
Thanks for this vid from Russia)
@LucyMuthoni5 жыл бұрын
Thank you very much for this video. Be blessed!
@aritraroygosthipaty36625 жыл бұрын
A very helpful lecture.
@eset36497 жыл бұрын
Crystal clear, thank you sir.
@c0t5567 жыл бұрын
Very good explanation! Thank you so much!
@MunkyChunk5 жыл бұрын
You are a... GENIUS!!! Thank you!!
@Ivane.h2 жыл бұрын
Single-handedly getting me trough ADM mit Gittenberger...
@sunildhull88785 жыл бұрын
at 5:43 set of integers mod n became non negative integer which not follow inverse property over addition so it not supposed to be grp i.e. |-3|+|3|=6 not 0 plssss reply
@HamblinMath5 жыл бұрын
Sunil, in arithmetic mod n, you take the remainder when the number is divided by n. For example, in arithmetic mod 7, the inverse of 3 is 4 because 3+4 = 0.
@DavidVonR Жыл бұрын
Too cool! I love group and ring theory :)
@katelikesrectangles7 жыл бұрын
That was really helpful, thank you!
@asmamokr13457 жыл бұрын
thk'x a lot but i have a question ... for groups the first example for the inverse (-a) don't belong to Z ( but in the rule it should belong ) ...i am confusing 😣😣
@MathMaster197 жыл бұрын
-a belongs to Z, it doesn't belong to N
@shrimp85943 жыл бұрын
Thank you:) Really helpful video.
@TheHuggableEmpire3 жыл бұрын
So addition and multiplication in rings doesn't necessarily mean the usual sum and product?
@janoprivracki19922 жыл бұрын
Correct, these are abstractions. Don't mind me commenting a year later... rofl. Hopefully it's helpful to someone in the future
@evrenunal3644 Жыл бұрын
@@janoprivracki1992 it indeed helped me, thanks
@AkamiChannel2 жыл бұрын
This was great. I just wish you had gone into what an algebra is. I'm on a mission to understand that, but google and youtube search results are completely worthless to me because they're full of content explaining ordinary algebra.
@HamblinMath2 жыл бұрын
An "algebra" is a vector space over a field that has multiplication of vectors. Complex numbers are an example of an algebra.
@AkamiChannel2 жыл бұрын
@@HamblinMath Yes, I had realized as much. Was thinking of a more formal explanation like one often sees for vector spaces. I did find one on youtube yesterday. It seemed to me, though, that the formal definition of an algebra is so general that just having a vague idea of it is enough.
@jasminefitzsimons896 Жыл бұрын
ok I literally love you
@fraktallyfractals20839 ай бұрын
About Z as a group, at the beginning of the video, does that mean that zero is its own opposite?
@josvandeneynde58496 жыл бұрын
Great video! I thank you!
@pragyapathak86607 жыл бұрын
Nice vedio sir but in group definition closure property is not mentioned
@HamblinMath7 жыл бұрын
Closure is typically understood to be part of what you mean when you say that the operation is "on" the set G.
@AyushSharma-ux4fk5 жыл бұрын
can you please share the slides that you are using to teach?
@Caleb-qr6lo6 жыл бұрын
lol I see xor symbol and get really confused.
@rushikeshkavar61287 жыл бұрын
Nice video. But is Ring Definition correct? According to Wikipedia, There should be additive identity and additive inverse. Am i wrong? Please clarify.
@HamblinMath7 жыл бұрын
Kavar Rushikesh R being a commutative group under addition includes those properties.
@gunjanrathore93373 жыл бұрын
Is division for any R' N' Q' is made an algebraic structure??? R set of real no N set of natural no (1, 2,3...) Q set of rational no
@monsieurfrog3 ай бұрын
Wouldn't Monoids be the simplest algebraic structure? When defining a group (M, #), it must first be a monoid, in addition for each element having an inverse.
@arnabdasphysics2 жыл бұрын
Superb!
@SzechSauce5 жыл бұрын
Great explnantions thanks!
@roysarit4 жыл бұрын
One more property of Groups - Closure property. If A , B belong to G, then if A ⊕ B = C, C also belongs to G.
@HamblinMath4 жыл бұрын
Using your notation, if "A ⊕ B" didn't belong to G, what are we even talking about? This is often rolled into the definition of what it means for "⊕" to be an operation on the set G.
@roysarit4 жыл бұрын
@@HamblinMath I guess you are right, but making it explicit may help beginners, so thought of mentioning here.
@ebrimagajaga463910 ай бұрын
Please help me answer this question… Is (N, +) a group ? N is a set of natural numbers…
@HamblinMath10 ай бұрын
No, because not every element of N has an inverse.
@tunistick8044Ай бұрын
@@HamblinMath so in Z it's true?
@HamblinMathАй бұрын
@@tunistick8044 The set of integers is a group under the addition operation.
@lamalamalex Жыл бұрын
I don’t understand why y’all want to hide the operations of ➕ and ✖️ and then just talk about those. I mean, what else is there? Why the back and forth?
@privateaccount12667 ай бұрын
Because the operation symbol could be either + or x. For example when you saw the properties that characterise a group there was a symbol. And something could be a group with + or a group with x. You use + or x depending on the question.
@poomalaip26206 жыл бұрын
Give each definition examples
@osebrainquestfoundation96313 жыл бұрын
It knowledgeable. Thanks
@footage64026 жыл бұрын
How does a group differ from a field?
@MagikarpKano6 жыл бұрын
a field has 2 operations and an inverse. A ring does not always have an inverse and a group only has 1 operation.
@harirao123455 жыл бұрын
very clear ... thank you!
@DantalionNl5 жыл бұрын
Why is the property A * B = B * A called identity and not commutativity ?
@HamblinMath5 жыл бұрын
Commutativity says "for all A and B in the set, A*B=B*A." It's not called identity. Read the "identity" property carefully.
@andreiparaschiv32575 жыл бұрын
great video one of my concerns is that people could get the idea that you can prove a property by trying out random examples, as you did with the multiplicative inverse over Q[radical 2] by choosing a=3 and b=4. it has to be generalised, and that means not assigning specific values. that could have been made a little clearer in the clip.
@HamblinMath5 жыл бұрын
I do specifically say "this isn't a proof"...
@Okapi0004 жыл бұрын
Why don't you include closure as a necessary property to be a group?
@HamblinMath4 жыл бұрын
"Closure" is typically assumed when we say that "+ is an operation on G."
@shiina_mahiru_90676 жыл бұрын
I dont think R is a field since 0 has no multiplicative inverse, but R* would be
@Enriquecav6 жыл бұрын
The multiplicative inverse is defined for all numbers except 0, so R is a field
@safofoh7 жыл бұрын
Thanks, it's very useful
@joeflaubert55976 жыл бұрын
Thank you
@Ambagaye5 жыл бұрын
Closure
@alex-my8hp5 жыл бұрын
you missed out closure
@HamblinMath5 жыл бұрын
While "closure" is sometimes included as a group/ring axiom, it's not really necessary, since for the operation on two elements to make any sense, the result of the operation must be in the set you're talking about.
@alex-my8hp5 жыл бұрын
@@HamblinMath oh, fair enough
@48_subhambanerjee222 жыл бұрын
love it
@AlessandroZir2 жыл бұрын
❤️❤️❤️🙏🙌
@haentertain83833 жыл бұрын
Please send to me solved ring examples all
@felixhsu95836 жыл бұрын
祝我信安数基能及格🌝
@a_ghoul5 жыл бұрын
i am only in the 2nd grade how do I find x 2x+2=6
@qusai05 Жыл бұрын
subtract 2 from both sides, u get 2x=4, then divide by 2 on both sides, u get x=2
@soseipirialadick-iruenaber72732 жыл бұрын
You're talking too fast and I'm not understanding 😔