I always start these kinds of questions with a=b=c. In this case we get a = cube root of 3. As all three variables can't be higher than this, at least one is lower, which means c=1. Repeat and we get b=1 or 2. Try both to get (3,2,1) and its combos.
@typo6912 жыл бұрын
Can you explain why all three variables cant be higher than cbrt(3)? I dont quite get the implication
@mcwulf252 жыл бұрын
@@typo691 Now I look again I see that it's not a given. If the RHS is a constant, yes. But actually we need to demonstrate that it's true (or not).
@raytheboss4650 Жыл бұрын
@@typo691 using the AM GM inequality
@fede90034 ай бұрын
@@raytheboss4650Hi! I know it’s from a while ago, but how would you do this with AM-GM?
@jyotishka4 ай бұрын
@@typo691 cbrt(3) is the upper bound of LHS. Also can we say that abc is the volume of a cuboid which is maximum when a=b=c?
@AllanKobelansky3 жыл бұрын
Well done. Well presented. You are in Michael Penn territory. The road to 10k subs looks easily attainable.
@clarinetowl75547 ай бұрын
there will never be another michael penn. He is far too powerful.
@browhat69355 ай бұрын
@@clarinetowl7554the one piece is real
@tonyhaddad13944 жыл бұрын
For an easy way if a=b a^3(a-2)=1 then we do not have a positive integer solution for (a) There for (a) can not equal (b)
@letsthinkcritically4 жыл бұрын
Yes, that’s exactly what I meant.
@moonlightcocktail2 жыл бұрын
My solution was similar up to 3:00. The equation is symmetric. Wlog sps a >= b >= c. a + (b3 + c3)/a2 = b2c2. this is an integer, so a2 | b3 + c3. Since a >= b >= c, b3 + c3
@Kettwiesel2510 ай бұрын
b3+c3 isn't actually maximized if b=c=√√(3a)though. I see that bc=√(3a), but b=c is actually the minimum over all such solutions.
@sa0o923 Жыл бұрын
2:29 how do you conclude a2
@lucasmcguire155411 ай бұрын
Because a^2 divides b^3 + c^3. To see why this is just look at the original equation to find that a^2 clearly divides a^3 + b^3 + c^3 then get rid of the a^3
@theuserings Жыл бұрын
3:40 why is b >= 2 when c = 2?
@ericlorentzen908911 ай бұрын
Because of the initial inequality a >= b >= c.
@jaysy29805 ай бұрын
Why not just remove common factor in 7:44? We can divide them out since a is a positive integer and therefore the expression a^2-a+1 is never 0.
@MgMG-ig4qg2 жыл бұрын
I don’t get how we get that a^2
@reeeeeplease11782 жыл бұрын
Just a line above, he got that a^2 is a divisor of b^3 + c^3 and since all of them are positive, a^2 has to be less or equal to b^3 + c^3
@MgMG-ig4qg2 жыл бұрын
@@reeeeeplease1178 thanks. What does he mean when he says that a^2 “is divisor” of …. and why can he say it?
@MgMG-ig4qg2 жыл бұрын
Applying it to the solution, we that 9 (a^2) isa divisor of 27 (a^3)+ 8 (b^3) +1 which is right, but how do we know? And knocking off a^3 how do we know the inequality still holds?
@reeeeeplease11782 жыл бұрын
@@MgMG-ig4qg well from the original equation we know that a^2 is a factor of (abc)^2 and since (abc)^2 = a^3 + b^3 + c^3, we know that a^2 has to be a factor of a^3 + b^3 + c^3 This implies that a^2 is a factor of b^3 + c^3 (because a^2 divides a^3)
@MgMG-ig4qg2 жыл бұрын
@@reeeeeplease1178 riiiiiiight :). Thank you so much….
@tvvt0052 ай бұрын
4:02 wait how did we Ho from c^4 b =32??
@suhail95112 ай бұрын
c⁴b =2 Then c⁴b>=32 but it must be less than or equal to 18 Hence c cannot be 2 or more
@adamzoltan16852 ай бұрын
Or (abc)**2 = 36 thus abc = 6 so a and b and and c is less than 6 and you can only divide 6 by 1,2,3,6 you cam just check for them
@absolutezero987410 ай бұрын
Hi Why is it at 5:07, a² - b | a³ + 1 - a(a² - b) ? Thank you
@absolutezero987410 ай бұрын
Did you see my question?
@jm227010 ай бұрын
Because we established a² - b | a³ + 1 and naturally a² - b | a(a² - b)
@absolutezero98749 ай бұрын
@@jm2270 Oh I see. Thank you This KZbinr doesn’t reply at all
@Emre675117 ай бұрын
@@jm2270what does a^2 - b | a^3 + 1 mean ? I don't know if they use different symbols in my country but I don't understand that operation at all ?
@jm22707 ай бұрын
@@Emre67511 x | y means x divides y.
@smashliek5086 Жыл бұрын
3:27 i dont get it, why can RHS exceed 2 ?
@icebeargt514211 ай бұрын
i think because C > B hence it (c/b) will be less than 1
@joehollander18107 ай бұрын
@@icebeargt5142*C
@mumtrz7 ай бұрын
Here's a homework: a^b + b^c + c^a = (abc)^abc
@AyushKumar-ot3zr7 ай бұрын
do it urself
@mumtrz7 ай бұрын
@@AyushKumar-ot3zr you think I'd give homework without knowing the answer myself? 🤣
@KaranSingh-qw7cn6 ай бұрын
How to solve it ? Give me a hint
@amgalanbayarshagdar94356 ай бұрын
This equation has only 3 solutions that [a; b; c]= [2; 1; 1], [1; 2; 1], [1; 1; 2]
@amgalanbayarshagdar94356 ай бұрын
@@KaranSingh-qw7cn use equality that a=>b=>c
@ericlorentzen908911 ай бұрын
How did you determine that (abc)^2
@DoReMeDesign11 ай бұрын
Look again at the question statement and the previous line ;)
@ericlorentzen908911 ай бұрын
@@DoReMeDesignAh. I got it. Thanks for the reply!
@rounaksambhwani26234 жыл бұрын
man pls can you recomend me any book of maths which starts from basic to this level pls
@letsthinkcritically4 жыл бұрын
I learn problem solving tricks by browsing content in Art of Problem Solving (AoPS: artofproblemsolving.com). I usually recommend online resources rather than books nowadays because online resources are better organised and you can find them very easily.
@rounaksambhwani26234 жыл бұрын
@@letsthinkcritically thanks !!!!
@krishgupta65184 жыл бұрын
You can try pathfinder for prmo by prashant jain
@TechToppers4 жыл бұрын
@@krishgupta6518 That book just has a ton of problems without solutions. If somehow you get stuck on a problem, game over. Plus it does not have advanced level problems.
@ShefsofProblemSolving3 жыл бұрын
Depends on the field. Here are some good books: Number Theory: ->104 Problems in Number Theory by Titu Andreescu Geometry: ->EGMO by Evan Chen Combinatorics: -> Problem Solving Strategies by Engel (old, but has some good explanations of basic techniques) -> Olympiad Combinatorics by Pranav Sriram (though this is advanced already) Competitions to look at (in order of difficulty): -> Junior Balkan Math Olympiad -> Tournament of Towns (especially for combinatorics) -> JUSAMO -> European Girls Math Olympiad -> National Olympiads of countries like Russia, Bulgaria, Brazil, Vietnam, South Korea, China, USA
@anupamrawat25813 жыл бұрын
Amazing solution Hope your channel grows soon Your problems are great
@turtlez27762 жыл бұрын
At 5:07, how do we know a < b^2? Isn't writing that a^3 + 1 - a(a^2 - b) is positive an assumption?
@fasebingterfe63542 жыл бұрын
--- a < b^2 --- We know that the inequality a < b^2 is true , because for an equation M-N , where M and N are natural numbers , If M-N is negative , N-M is positive and vice-versa. This also applies when one of the numbers is squared . You can try this with any two natural numbers that you want. --- a^3 + 1 - a(a^2 - b ) --- According to the inequality a^2 - b < 0 , If we multiply both sides by a , we get a ( a^2 - b ) < a ( 0 ) , which doesn't change what it holds . Coincidentally , a^2 - b | a^3 + 1 - a( a^2 - b ) has the same effect that a^2 - b | a^3 + 1 - ( a^2 - b ) has.
@cantcommute2 жыл бұрын
a(a^2-b)
@turtlez27762 жыл бұрын
@@cantcommute understand.
@Emre675117 ай бұрын
Where does it even say a < b^2 ? Or where does it come into play ?
@bagasramadhan16773 жыл бұрын
why (c/b)^3 Is Equal To 1 ?
@sender14962 жыл бұрын
I'm guessing that since c and b are integers, and c < b, c/b has to be less than 1 and hence bounded by 1
@Navodayaclass_22113 ай бұрын
By intuition i found abc triples -1,1,1 ordered
@tonyhaddad13944 жыл бұрын
5:45 mistake If (a)=1 then a^3(a-2) is = -1 which not 1
@letsthinkcritically4 жыл бұрын
That’s my point, I was trying to say that this would lead to a contradiction.
@tonyhaddad13944 жыл бұрын
@@letsthinkcritically thank u for your reply and yes now i get it 💓💓
@katagagyi35233 жыл бұрын
I feel really dumb but I don't understand how comes in 1+ab>=a²-b😅😅. And also above that part a²-b| a²+1 means that a²-b divides a²+1 or does it mean subtraction?
@fix50723 жыл бұрын
No youre not dumb, he just speaks really fast! The step follows because he earlyier showed that (a^2)-b divides a*b+1 and if an integer divides another integer, the dividing integer is less then or equal than the divided integer. Dont let your head hang down if u dont hear/understand one Thing!
@fix50723 жыл бұрын
Sometimes i also cant catch up in These yt Videos, because its way above the Things we do in class and we dont do any number theory in class as well
@katagagyi35233 жыл бұрын
@@fix5072 thank you, i get it now. :::)
@katagagyi35233 жыл бұрын
@@fix5072 and one more question: if c²b
@fix50723 жыл бұрын
@@katagagyi3523 if youre talking about (c^4)*b =c thus b>=2 and the entire lhs woul be atleast (2^4)*2 which is bigger than 18
@mra41673 ай бұрын
If negative was possible then, a=1,b=-1 and c=1, can be a solution.
@boomer124811 ай бұрын
how can we say that a^2 | a^3+b^3+c^3?
@Jan-vz5ge10 ай бұрын
because from (abc)^2
@boomer124810 ай бұрын
Oh thanks lol@@Jan-vz5ge
@abirliouk81553 жыл бұрын
Im sorry but why 1+ab>a(b+1)-b 6:26
@marcotosini71563 жыл бұрын
because a^2 -b | 1 + ab then 1 + ab >= a^2 -b from a >= b+1 follow that a^2 -b >= a * (b+1) - b (it's simple substitution of a with b in a^2) then 1+ab >= a(b+1)-b
@prithujsarkar20104 жыл бұрын
Can you check this problem out from 1992 AIME Problems/Problem 15 ? The problem states that Define a positive integer $n$ to be a factorial tail if there is some positive integer $m$ such that the decimal representation of $m!$ ends with exactly $n$ zeroes. How many positive integers less than $1992$ are not factorial tails? One of my fav AIME problems :)
@letsthinkcritically4 жыл бұрын
Sure thing!
@mr.kaiden715911 ай бұрын
@@letsthinkcritically when c=1 a³+b³+1=(ab)² (a+b)(a²-ab+b²)=(ab-1)(ab+1) Two condition a+b=ab+1 and a²-ab+b²=ab-1 (no solutions because (a-b) ²=-1) a+b=ab-1 and a²-ab+b²=ab+1 (from this system we get b=2 and a=3) How to find c=1 is insane solutions 🙏
@dionisis19174 жыл бұрын
Please make a platform which we can write our favourite problems
@letsthinkcritically4 жыл бұрын
Feel free to let me know here! I will make videos on problems that you suggest.
@ryanclothier68533 жыл бұрын
Why does it become 3a^3 in the beginning and not a^6?
@ryanclothier68533 жыл бұрын
Never mind I’m stupid
@aditiapermana50743 жыл бұрын
@@ryanclothier6853 ayoo broo 🥺
@randombanana6403 жыл бұрын
😅
@theimmux30343 жыл бұрын
I woulda not been able to pull of any of those calculations but I just happened to know that the sum of first n cubes is the sum of the first n integers squared and six happens to be equal to the sum of its factors. Does my reasoning also mean that (a,b,c) = (1,2,3) is the only solution?
@mishania6678 Жыл бұрын
we don’t know whether a,b,c are consecutive so this formula does not actually works here
@이름-k8v6v11 ай бұрын
The most entertaining math video I've ever watched
@Wu-Li3 жыл бұрын
You're a genius
@mukaddastaj52233 жыл бұрын
Thanks for these vids u make! U really do inspire)
@Mrpallekuling4 ай бұрын
A nice problem. I like!
@syedamashukaashrafi27552 жыл бұрын
Have you tried plugging a=-1, b=1, c=0,1?
@yuthikasenaratne7250 Жыл бұрын
0 is not an inetiger brother
@sejr80533 жыл бұрын
Its 1, 2 and 3.
@sparkaks-gr86474 жыл бұрын
Wow nice problem and soln too!
@letsthinkcritically4 жыл бұрын
Thank you!!
@alexkonopatski429 Жыл бұрын
Nice solution! How long did it take you to solve that?
@Emre675117 ай бұрын
He didn't find it himself. He just writes it down. Why do you think he doesn't explain anything at all except the most obvious things ?
@andrea-mj9ceАй бұрын
@@Emre67511How do you know 3:19 this. He did explain the whole reasoning in the video
@chrismcgowan39382 жыл бұрын
a=1,b=2,c=3
@fansuli4274 жыл бұрын
Good
@mathdetectivej9764 Жыл бұрын
very interesting problem!
@HemantPandey1234 жыл бұрын
Using AM>=GM we get (abc)^2 is < = 3 (Applying Am>=Gm on LHS). Hence all bounds found without any lengthy steps.
@alanjoelj15914 жыл бұрын
Wrong. AM-GM gives 3abc
@HemantPandey1234 жыл бұрын
@@alanjoelj1591 But if (abc)^2 is >= 3abc then isn't it contradicts original solution?
@alanjoelj15914 жыл бұрын
@@HemantPandey123 Where is the contradiction?
@HemantPandey1234 жыл бұрын
@@alanjoelj1591 Solution assumes (abc)^2
@alanjoelj15914 жыл бұрын
(only) solutions to the equation are (1,2,3) and permutations. (abc)^2 is clearly 36 which is > 3.
@mathsislove1973 жыл бұрын
I didn’t get anything after 2.00 min, can someone pls explain me how he got the other inequality at 3.35mins
@DaveyJonesLocka3 жыл бұрын
He multiplied the previous result by 9.
@ZIN240319803 жыл бұрын
Thanks, I liked your way of solution, it's very nice.
@awildscrub3 жыл бұрын
Why does this guy sound like Uncle Roger
@muhammadafifuddin93532 жыл бұрын
Nice to learn it.
@fansuli4274 жыл бұрын
I really like your video. Thank you
@letsthinkcritically4 жыл бұрын
Thank you!!
@dionisis19174 жыл бұрын
I think that it's a bit easy for IMO.
@deveshichaudhary25654 жыл бұрын
Yes i also saw that
@letsthinkcritically4 жыл бұрын
Probably that’s why it wasn’t chosen to be in the real contest?
@Emir-life210 күн бұрын
Are you serious? I'm în 9 class, and I'm preparing for IMO, but this is so hard 😭!!
@SimpMaker3 жыл бұрын
You wrote 3 when you multiplied by 9 at 3:41
@mithutamang38883 жыл бұрын
While, b=32 is also a solution? Reply now.
@sohumsharma2892 Жыл бұрын
Wow, nice.
@rk-ds4vl7 ай бұрын
Very good
@beautyofmath68213 жыл бұрын
Great
@danicharif72242 жыл бұрын
Nice
@anjaneyasharma3223 жыл бұрын
Guessing 1 2 3
@nevomirzaihamadani26483 жыл бұрын
Man please, i like what u are doing but explain it in a clearer way, speak more distinctly, and maybe present it in a better way if u can
@Emre675117 ай бұрын
Fr I feel like he just writes it down without explaining at all