An elegant proof using reflections

  Рет қаралды 661

Calimath

Calimath

Күн бұрын

Пікірлер: 4
@l4fourier75
@l4fourier75 Жыл бұрын
Really beautiful! Especially the explanations how to deal with reflections in the beginning have given me enlighting insight in this scenario. It seems Q to be the incenter, but this does not have to be this way - nevertheless a super useful hint when searching for the solution.
@Maths_3.1415
@Maths_3.1415 Жыл бұрын
I think this is the shortest video on the channel
@EgeSaribas05
@EgeSaribas05 4 ай бұрын
There is another proof to this beautiful problem: Let O be the center and r be the radius of (AFE). So: BO² - r² = BF. BA = BD.BC CO² - r² = CE. CA = CD.CB We can substract them: BO² - CO² = BD² - CD² That means OD is perpendecular to BC. So: BO² = BD² + OD² We can use first equation: BD² + OD² - r² = BD.BC Hence: OD² - r² = BD.DC Also if we define T as the second intersection of AD and (AFE): OD² - r² = DT.DA Hence: DP.DA = DB.DC = DT.DA That means DP = DT. Also we know that the symmetry of T whit respect to OD is on the (AFE) again. Let's name that point Q'. By symmetry, DP = DT = DQ'. That means
@calimath6701
@calimath6701 4 ай бұрын
Cool solution!
A beautiful property of the Euler line
14:30
Calimath
Рет қаралды 568
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 9 МЛН
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
Pierre de Fermat couldn't find this solution
11:59
Calimath
Рет қаралды 1,6 М.
A very famous olympiad geometry problem
5:04
Calimath
Рет қаралды 617
This problem combines number theory and geometry
8:31
Calimath
Рет қаралды 1,3 М.
Olympiad Geometry Two Intersecting Circles Example 4
11:54
Olympiad Geometry 奥赛几何
Рет қаралды 30
One of the most important properties about excircles
5:57
Calimath
Рет қаралды 1,1 М.
Using probability theory to interpret these equations
11:07
Inequalities are back in the INTERNATIONAL MATH OLYMPIAD
4:56
Let's solve IMO 2024 Problem 4!
6:27
Theoria Numerorum
Рет қаралды 146
Dot Product Easy Proof
2:47
Destined Emporium
Рет қаралды 512
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН