1/3 is easily guessable, and since there's just one intersection point, there are no more solutions.
@mcwulf252 жыл бұрын
The way to get full marks in this question is to prove your last statement.
@seroujghazarian63432 жыл бұрын
@@mcwulf25 why? xe^x is bijective for x>=0
@crazycat15032 жыл бұрын
@@mcwulf25 27^x is increasing and 1/x is decreasing
@バナな-j5m2 жыл бұрын
If x≦0, x27^x≦0.This means that x27^x≠1. So,We don’t have to find negative x. x27^x is monotonically increasing function where x>0. So,x such that meets x27^x=1 is uniquely determined.
@think_logically_2 жыл бұрын
We have x·(27^x)=1. Since the left-hand side is monotonically increasing, the equation may have only one solution. Rewrite the equation as x·3^(3x) = 1, then multiply by 3: (3x) · 3^(3x) = 3. Substitution y=3x gives y·3^y=3 or y·3^(y-1)=1, where we can easily guess that y=1, so x = y/3 = 1/3.
@sudhakumari64152 жыл бұрын
There is no need of doing so long as follows ---- 27^x=1/x 27=(1/x)^(1/x) 3^3=(1/x)^(1/x) Hence both RHS is equal to LHS-- THEREFORE,x=1/3 That's how I made. Like if u agreee
@SyberMath2 жыл бұрын
Sure! 🙂
@cablethelarryguy2 жыл бұрын
I like how rigorously you do these. Keep up the good work.
@SyberMath2 жыл бұрын
Will do! Thank you 💖
@ytlongbeach2 жыл бұрын
all that rigor is swell and all. however, i just guessed 1/3. done. lol
@pcklop2 жыл бұрын
We can find general solutions using the lambert w function, where xe^x=y is solved by w(y)=x. The equation A^x=1/x has solutions x=w(ln(A))/ln(A). For the particular value A=27, plugging in gives x=1/3.
@HoSza12 жыл бұрын
My calculator doesn't have a Lambert W button, does yours? So how do you plug A into it?
@leonardobarrera28162 жыл бұрын
I like the w lambert function!!!
@mcwulf252 жыл бұрын
1/3 is easy guess and check. Is it enough to say that the two functions, call them f and g, are equal when f(1/3) = g(1/3). And f is monotonically increasing while g is monotonically decreasing for x>0? ie f < g if x < 1/3 and vv. For x 0 but g < 0 so no intersections.
@srividhyamoorthy7612 жыл бұрын
dayum i have developed a lot of equation solving skills , i could figure out the answers to most of your videos now
@BOBPERIO22 жыл бұрын
Very nice video! Merry Christmas to you and your family. 🎅
@SyberMath2 жыл бұрын
Thank you! Merry Christmas and Happy Holidays!!! 💖🎉🥳
@scottleung95872 жыл бұрын
I knew right away x=1/3 after a first glance.
@alextang46882 жыл бұрын
I had learnt this "special" method from you channel that I had not learnt at school. This is the one you always use and seems workable for some equations. It is nice! Merry Xmas!!!🎅🎅🎅🎅🎅🎅
@SyberMath2 жыл бұрын
Excellent! Merry Xmas, Alex!!! 🥰
@vashon1002 жыл бұрын
learned is better than learnt
@moshyroth2 жыл бұрын
This will work for the general case. 4^x=1/x (x=1/2), 256^x=1/x (x=1/4), 3125^x=1/x (x=1/5). In general, equations in the form n^n^x=1/x will solve to 1/n, as n^n^x=n^n^(1/n)=1/x=n.
@pNsB2 жыл бұрын
It seems to be possible to solve this with the Lambert W function. That was my approach and I got an answer, although evaluating it is a pain without googling it: I got W(ln(27)) / ln(27), which is actually approximately 1/3.
@VolksdeutscheSS Жыл бұрын
I did it by Lambert Method as well--successfully.
@tyronekim35062 жыл бұрын
That was a nice explanation. Thank you.
@SyberMath2 жыл бұрын
Np. Thank you! 😍
@ГеоргийПлодущев-с2н Жыл бұрын
Преровняем обе части к y, имеем y=27^x y=1/x, график первой функции- экспонента , второй -гипербола, у них может быть только одна точка пересечения, следовательно, если мы найдём корень -он будет единственным. Это число 3 Ответ:3
@homoexhumo2 жыл бұрын
We have 27^x = 1/x => 27=(1/x)^(1/x) let y = 1/x => 27 = y^y Now the solution is obvious, but we could find it by applying the recursive relationship: y = 1, y = (27^(1/y)+y)/2 which successively gives: y = 14 y = 7.6 y = 4.57 y = 3.31 y = 3.008 y = 2.999 ... y = 3 Therefore x = 1/y = 1/3
@academiabartender63042 жыл бұрын
You didn’t have to explore t^t function for monotonicity. After guessing the answer you could’ve just said that 27^x is increasing and 1/x decreasing, that’s enough
@qwang31182 жыл бұрын
Let y = 3x. Then y*(3^y) = 3. y = 1 is an easy solution. Since y*(3^y) is strictly increase in y > 0, y = 1 is the unique solution. so x = 1/3 is the unique solution.
@Vinnan_Thamizh2 жыл бұрын
I found the answer in a few seconds after looking at it.
@davidbrown87632 жыл бұрын
So did I
@tayserbinjafor15692 жыл бұрын
Can't you do the Lambert W function yet? This problem can be solved by using the Lambert W function.
@namoplayz54082 жыл бұрын
You can use the lambient W function
@jim23762 жыл бұрын
x = 1/3 by inspection. Cross multiple. x(27^(1/3)) = 1. (1/3)(3) = 1.
@limitless10352 жыл бұрын
You can also use Lambert W function to solve this equation
@theyousefkhan2 жыл бұрын
I was thinking that, but how do you apply it for 27? I thought it returned x where the expression is xe^x, not xa^x with a=27 for example
@limitless10352 жыл бұрын
@@theyousefkhan 27=e^ln27 You'll get x×e^(xln27) Then you just multiply by ln 27 to both sides xln27×e^(xln27)=ln27 Then use Lambert W function
@SyberMath2 жыл бұрын
Too complicated! 😲😜😁🤣
@RedAngel119932 жыл бұрын
This is the faster way: after logaritmization, we get: 3x ln3=-lnx; 3ln3=-lnx/x; it follows x=1/3.
@SyberMath2 жыл бұрын
How come I never thought of that? 😲😁
@МаксимАндреев-щ7б2 жыл бұрын
x=27^(-x)>0, x increases, 27^(-x) decreases, x=1/3 is a solution -> this is unique solution
@michaelrubin81942 жыл бұрын
what was the point of analysis of the derivative from negative infinity to 1/e (in the table), if it is defined only for t>0???
@SyberMath2 жыл бұрын
I don’t know 😜
@JohnRandomness1052 жыл бұрын
Unfortunately, the only way I know of to solve this equation is by inspection or trial and error: 27^⅓ = 3 = 1/⅓. Also, for positive x, 27^x increases while 1/x decreases. If x is negative, 27^x is positive while 1/x is negative. Therefore, the solution is unique: x = ⅓.
@seroujghazarian63432 жыл бұрын
*cough* Lambert W function
@nancydelu40612 жыл бұрын
What fun!
@ermattia2 жыл бұрын
I enjoyed it a lot!
@SyberMath2 жыл бұрын
Glad you enjoyed it!
@nikolasbradley36082 жыл бұрын
When I tried this out for myself, i got (W(ln27))/(ln27) which is about .303. I multiplied by ex, rewrite in terms of e to the power, multiples by ln27 on both sides and this used Lambert, and divided over the rest, what is this value coming from?
@SyberMath2 жыл бұрын
Lambert W sucks!!! 😜🤣
@fullfungo2 жыл бұрын
Did you use the principal value of W? (it’s a multivalued function)
@odysseasv77342 жыл бұрын
Nice one!
@SyberMath2 жыл бұрын
Thanks!
@walterufsc2 жыл бұрын
All the analysis using calculus and graphing could have been done directly on the original functions of x, without having to do the more complicated analysis on the auxiliary variable t.
@SyberMath2 жыл бұрын
Sure
@mathisblanchot2 жыл бұрын
We can use W Lambert function
@SyberMath2 жыл бұрын
😲😜😁
@stevenlord77932 жыл бұрын
after viewing and reading the comments I did not see a way to solve a more general situation where 27 is replaced by C, a positive constant. Numerical methods? Or is this where Lambert W comes in?
@SyberMath2 жыл бұрын
yes
@stevenlord77932 жыл бұрын
@@SyberMath So then, maybe say how? Or perhaps it is too complicated? Without a general method, the the example here is contrived to be solvable by inspection.
@hamitkoca1110 Жыл бұрын
excellent
@GreenMeansGOF2 жыл бұрын
x = W(ln(27))/ln(27). The principle branch gives us 1/3.
@peterruf14622 жыл бұрын
Lambert w function is boring. It's like googleing the answer
@angelmendez-rivera3512 жыл бұрын
@@peterruf1462 It isn't Googling the answer any more than saying x = sqrt(2) or x = -sqrt(2) for x^2 = 2 is Googling the answer.
@peterruf14622 жыл бұрын
@@angelmendez-rivera351 I generally agree with you but in this case you could simplify it to xln(27)e^xln(27)=ln(27)=ln(3)e^ln(3) ln(3)=xln(27) x=1/3 No "real" need for the w Lambert function. It is more like writing x=sqrt(4) as solution for x^2=4 instead of +/- 2
@angelmendez-rivera3512 жыл бұрын
@@peterruf1462 That argument doesn't make sense. It seems to me that your issue here isn't with the Lambert W function, but with the fact that the answer hasn't been simplified. That's what the example you gave shows. The problem with writing sqrt(4) isn't that it uses sqrt, but that it isn't simplified.
@peterruf14622 жыл бұрын
@@angelmendez-rivera351 that is exactly my problem. Using the Lambert w function when it isn't "really" necessary. Oh well I wrote it in terms of the Lambert function let me just start up wolfram alpha to look at the principal branch.
@gelbkehlchen Жыл бұрын
Solution: 27^x = 1/x |*x≠0 ⟹ x*27^x = 1 = 1/3*27^(1/3) |the same operations are done with x on the left side of the equation and with 1/3 on the right side of the equation. Therefore must be: x = 1/3
@legendeca55352 жыл бұрын
If we simplified 27^x to 3^3x and cross multiplied to get 3x^3x =1^1 since the exponents are the same we could just change this into the equation 3x=1 which is x=1/3
@RebornKaotic2 жыл бұрын
No you can only do that if its same base
@sergeyshchelkunov57622 жыл бұрын
Nice. Really detailed and thorough explanation how to solve this kind of problems.
@SyberMath2 жыл бұрын
Glad to hear that!
@gapplegames16042 жыл бұрын
so easy. once you get (1/x)^(1/x)= 27, well, what raised to the power of itself equals 27? three. 1/x = 3, x = 1/3
@individual1st6482 жыл бұрын
i just solve it by reasoning that since 27^x obviously is supposed to increase whereas 1/x doesnt, then it could be inferred that x must be a fraction and knowing cube roots the answer was evident
@fireproyect99902 жыл бұрын
The Lambert W function: 🤡
@SyberMath2 жыл бұрын
😱😁🤪
@negulescuanca8651 Жыл бұрын
The equation can not have negative solutions, obviously, The first member is an increasing function and the second a decreasing one, so the solution is unique and can be found immediatelly. Why so much trouble using derivatives?
@explainingphysicsandmathematic2 жыл бұрын
Don't we need to check that there isn't the graph on -t axis for t^t...?
@SyberMath2 жыл бұрын
Not well defined
@joeldick68712 жыл бұрын
Tea time for two!
@SyberMath2 жыл бұрын
😄
@beirirangu2 жыл бұрын
27^⅓=∛27=3 and ⅟⅓=3
@Angels_i32 жыл бұрын
Lambert W is a not nice looking but it gives a solution easily
@pavlikkk1012 жыл бұрын
Solved in 1 second after one look :)
@rogerkearns80942 жыл бұрын
27: what's the first thing that anyone who loves numbers knows about it? Now, go figure.
@user-pr6ed3ri2k2 жыл бұрын
t=1/3???
@ftorum192 жыл бұрын
I was sloving it for 5 sec. And I have gotten right Answer
@martinjoster32822 жыл бұрын
Guessed it before coming down here lol
@levskomorovsky17622 жыл бұрын
Please tell me if my decision is correct? х27^х = 1 х(3^3)^х =1 х3^3х = 1 х3^х3 = 1^1 Х3 = 1 х = 1/3
@DayneTreader2 жыл бұрын
Using a perfect cube was too easy.
@Kualinar2 жыл бұрын
Found 1/3 rather quickly. Just looking at the equation, it's obvious that X MUST be fractional and less than 1. Then, we know that 27 = 3^3. So, 27^(1/3) = 1/ (1/3) = 3
@02lyn732 жыл бұрын
27=3^3 1/x=3 X=1/3
@hazalouldi71302 жыл бұрын
on peut le resoudre zvec la fonction lambert w(3ln3)=ln(1÷x)
@deltalima6703 Жыл бұрын
Um, what about x
@mickanton72852 жыл бұрын
simple question but you made it very complicated
@SyberMath2 жыл бұрын
That’s me! 🤪
@mickanton72852 жыл бұрын
@@SyberMath Enjoy the block
@shorts_for_shortcuts2 жыл бұрын
Can't you use logbase 3 to t^t and get t = 3
@vitalsbat23102 жыл бұрын
Lambert W function
@salvatoremanzo2 жыл бұрын
X=1/3
@broytingaravsol2 жыл бұрын
x=1/3
@moeberry82262 жыл бұрын
Too easy Syber this wasn’t even a challenge.
@scottleung95872 жыл бұрын
Well, it was easy to guess and check but hard to go thru all the rigorous analysis.
@SyberMath2 жыл бұрын
You’re too good! 🥸😁
@moeberry82262 жыл бұрын
@@SyberMath lol
@moeberry82262 жыл бұрын
@@scottleung9587 there’s no deep analysis needed, Syber made it more complicated than it needs to be. 27^x is an increasing function and 1/x is a decreasing function for all x. So max there is 1 solution game over.
@user-lu6yg3vk9z2 жыл бұрын
@@SyberMath 27^x is an increasing function and 1/x is decreasing so therefore there is only one solution.
@neuralwarp2 жыл бұрын
You didn't prove that f(t) is decreasing on [0,1/e)
@SyberMath2 жыл бұрын
The table shows it
@diegocabrales2 жыл бұрын
@@SyberMath You took some close value at the right-hand side of 1/e and saw that f(t) > 0 for that value. However, you only said that for some close value at the left-hand side of 1/e, f(t) < 0. I think that was what neuralwarp was trying to say.
@ganda34542 жыл бұрын
3^3x=x^-1
@joyceenjoy-reading79142 жыл бұрын
guess for x =1/3 within 10 seconds
@岸辺緑2 жыл бұрын
直観で 1/3に気づければ、あとは他の実解がないのを詰めればよいが そうでなければ苦戦
@explainingphysicsandmathematic2 жыл бұрын
Actually I checked google why there isn't the graph for minus side sir ?
@SyberMath2 жыл бұрын
Not well defined
@julianbruns74592 жыл бұрын
f(t) = t^t(1+ln(t)) and the logarithm is only defined for positive numbers when talking about real numbers.
@Roq-stone2 жыл бұрын
I can’t believe you threatened the lives of two birds and your video didn’t get taken down!! 😅
@SyberMath2 жыл бұрын
Oh, no! 😳🤫😁😂
@yoshinaokobayashi15572 жыл бұрын
27=3^3 then x=1/3
@jensjacobs90502 жыл бұрын
in Holland we say : use your head. It took me 3 seconds with my head
@famtik_arshi75474 ай бұрын
27^(1÷27)= x^(1÷x) x=? can you pls solve.
@-basicmaths8622 жыл бұрын
Put 3x=t, Then x=t/3 &1/x=3/t then solving this equation We get t=1 & x=1/3
@tryingtomakeanamebelike72452 жыл бұрын
Imagine not knowing your roots and just being able to say 1/3 without doing math
@SyberMath2 жыл бұрын
😀
@giuseppemalaguti4352 жыл бұрын
x=W(ln27) /ln27=1/3
@yackawaytube2 жыл бұрын
1/3 easy. x can't be > 1. 0 is too small. 27 to any power < 1 gives an irrational number except for 1/3 since 27 is 3^3. No fraction can match an irrational number.
@matthewmcdaid79622 жыл бұрын
X = 1/3. 27 to the 1/3 power (third root of 27) is 3, which is 1 / 1/3. QED
@arturovinassalazar2 жыл бұрын
So me: x=W(ln(27))/ln(27) xDDD ¿There isnt a formula for W function?
@novemtrigintillionaire76842 жыл бұрын
bro using calculus while I found the answer 1/3 in 24 seconds
@SyberMath2 жыл бұрын
😁
@omurgokcinaar25012 жыл бұрын
I was doubting if you were Turkish or not because of your accent. But then you said you liked tea and now I know for sure that you are Turkish hhhhhh
@SyberMath2 жыл бұрын
😁😍😊😉
@geoffreyparfitt70032 жыл бұрын
What index fits well with a cube number?.. One third?...Oh yes that works.
@SyberMath2 жыл бұрын
😄
@justinnitoi32272 жыл бұрын
I used lambert W
@SyberMath2 жыл бұрын
😱😜
@benitoregaloncastro37252 жыл бұрын
X=1/3.
@gregoriopisconte46282 жыл бұрын
Demasiado fácil x igual , 1/3
@ammuvilambil80322 жыл бұрын
1/3
@phrtao Жыл бұрын
The first thing you notice is that 0 < x < 1; then you notice that 27 is actually a cube value. After that the numbers just fall into place.
@user-nm6yy1uq3d Жыл бұрын
X=1/3 easy
@nozdref15672 жыл бұрын
If you can't get rid of something, let's (ln) both sides!
@kropek17542 жыл бұрын
I mean I knew it by simply taking a look xD
@SyberMath2 жыл бұрын
👍
@폭풍간지남-o8v2 жыл бұрын
As a korean this equation can solve by 7yo korean kid
@SyberMath2 жыл бұрын
Wow!
@barakathaider63332 жыл бұрын
👍
@davidbrown87632 жыл бұрын
No need for much of this. I solved this in 3 lines, without functional notation, logs or graphs - just simple algebra. After establishing that t = 3, you could have simply concluded that x=1/t =1/3.
@SyberMath2 жыл бұрын
Nice
@davidbrown16142 жыл бұрын
@@SyberMath Thank you.
@무명-q2w Жыл бұрын
삼분의 일 ㅋㅋ
@faithieTAKEN2 жыл бұрын
insanin aksaninin olmasi ne guzel sey ya
@SyberMath2 жыл бұрын
😁
@johnchurch2632 Жыл бұрын
Way too much explanation for a simple equation. with no lengthy explanation. Some people go overboard with their thinking, no wonder some people hate Math (Retired Math teacher here, LOL)
@jwang734 Жыл бұрын
Overdone, 1/3 is easily seen.
@matteomitrano41289 ай бұрын
I can't understand why you should complicate your life with all this jazz and nonsense. 27=(1/x)^(1/x) Let 1/x=n 3³=nⁿ n=3 n=1/x=3 x=1/3 Simple and without too many frills
@langleywallingford2602 жыл бұрын
Umm... x = 1/3... pretty easy to figure out...
@langleywallingford2602 жыл бұрын
Why did he need to give such a long, mind bogglingly, complicated explanation with endless digressions when the answer is obviously one-third??? 🙄🙄🙄