An interesting integral with the floor function.

  Рет қаралды 89,677

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 170
@TheOneSevenNine
@TheOneSevenNine 4 жыл бұрын
I've never seen anyone write a summation sign with such ferocity
@blackpenredpen
@blackpenredpen 4 жыл бұрын
You opened my eyes to new and crazy things!! And that camera angle switch at 6:55 was fresh!
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
Thanks, I found another tripod at the thrift store a few months ago and finally put it to good use!
@paillote
@paillote 4 жыл бұрын
This channel should be called "theFloorFuncionGuy"
@FireStormOOO_
@FireStormOOO_ 3 жыл бұрын
Indeed. Kinda surprising calculus is helpful on something so agresssively discontinuous.
@lambdcalculus
@lambdcalculus 4 жыл бұрын
That was cool. I'm happy that I was able to solve this on my own, but only because I was able to leave the answer in function of the sum S = 1 - 1/2 + 1/3 - 1/4 + ..., which I happened to know was ln(2).
@alessandropizzotti932
@alessandropizzotti932 4 жыл бұрын
Yes, that is a much easier way.
@virajagr
@virajagr 4 жыл бұрын
Yes, from the Taylor series of ln(x+1)
@shrirammaiya9867
@shrirammaiya9867 3 жыл бұрын
@@virajagr no directly from the integral
@lyrimetacurl0
@lyrimetacurl0 2 жыл бұрын
For me I was like "I wonder if it's going to be ln(2)" without really knowing why I thought it 😂
@gradecracker
@gradecracker 4 жыл бұрын
Its crazy that the steps you used were so bizarre and unconventional but it still got you to the same answer! Absolutely brilliant!
@technoguyx
@technoguyx 4 жыл бұрын
Love how simple the final expression is. Btw the audio seems to clip a lot more than in previous videos.
@FadkinsDiet
@FadkinsDiet 4 жыл бұрын
I'd guess the recording level was too low and he had to up the gain in post
@Nomnomlick
@Nomnomlick 4 жыл бұрын
I noticed very quickly that the integral from 1/n to 1/n+1 was just 1/n-1/n+1 with alternating signs starting with negative. So you get -(1-1/2) + (1/2-1/3) - (1/3-1/4) + ... Getting rid of the paranthesis and grouping terms with common denominator you get: -1 + 2/2 - 2/3 + 2/4 - 2/5. Substracting and adding 1, factoring out -2 you get 1-2AlternateHarmonic. Found ln2 by finding that the Maclaurin series of ln(1+x) fit the alternating harmonic series pretty well.
@abushahid1150
@abushahid1150 4 жыл бұрын
Also if you remember the Taylor series of ln(1+x) and vigilant enough, you could easy avoid like last 5 steps.
@peterdecupis8296
@peterdecupis8296 2 жыл бұрын
Very cool work! As a matter of fact, the function is well integrable in Peano sense, because the discontinuity of the floor function occurs only in a numerable set of isolated points; then we can correctly replace the improper integral with a series whose terms are definite integrals relevant to adjacent unit intervals [k, k+1), for any positive index k. Then the final evaluation of the series is correctly performed by exploiting the convergence condition of alternate sign series with vanishing terms; a quicker approach to the final evaluation is based on the Taylor-McLaurin series expansion of the function f(x)=ln(1+x) for x=1, i.e. f(1)=ln2, that is immediately recognized as the alternate harmonic series.
@1089S
@1089S 2 жыл бұрын
You make it sound like a fine poetry and that is awesome!
@PatrickOfTav
@PatrickOfTav 3 жыл бұрын
"And that finishes this video". Have I got the right Michael Penn?
@phee4174
@phee4174 3 жыл бұрын
another nice property of this integral is that if you replace 1/x with x^s you get something that's essentially the alternating Riemann zeta function (though it's evaluated at something like 1/s instead of s, and is multiplied by and has added to it a factor of 1/x^2)
@alexpavlov6754
@alexpavlov6754 3 жыл бұрын
I think You are using famous math sum, but you resolve sum in the great wonderful manner. Thank you
@mathunt1130
@mathunt1130 4 жыл бұрын
The substitution was key here. It made things very clear to see and is clearly a very good technique for these types of problems. Finding the series by integration was also a neat trick.
@el_variable
@el_variable 4 жыл бұрын
I love the way you make your videos. Keep it up, I learned a lot from you :)
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@wannabeactuary01
@wannabeactuary01 4 жыл бұрын
Love this and the use towards the end of the anti-derivative is icing on a cake!
@AltinoSantos
@AltinoSantos 4 жыл бұрын
Very interesting. The function graph would also be welcome. Congratulations on the channel.
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@JoJoModding
@JoJoModding 4 жыл бұрын
10:58 "because this is absolutely convergent" Is it? If you consider the absolute sum you just get 1/n which diverges.
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
That’s my bad, it’s actually because of the dominated convergence theorem.
@harlock7521
@harlock7521 4 жыл бұрын
@@MichaelPennMath because of alternating series test also
@martinepstein9826
@martinepstein9826 4 жыл бұрын
@@harlock7521 That's just a convergence test. It doesn't tell you whether you can interchange the integral and the sum.
@mushroomsteve
@mushroomsteve 4 жыл бұрын
I got stuck at 10:55 when you said "this is absolutely convergent". It looks like the series in question is just a different form of sum(0,inf,(-1)^n/(n+1)), which is an alternating harmonic series, and thus not absolutely convergent.
@tracyh5751
@tracyh5751 4 жыл бұрын
You are right. Absolute convergence does not work here. Instead, he can use the dominated convergence theorem along with the alternating series partial sum estimate to justify the interchange.
@mushroomsteve
@mushroomsteve 4 жыл бұрын
@@tracyh5751 Thank you! I was really confused about that step.
@jordiplotnikovpous4844
@jordiplotnikovpous4844 4 жыл бұрын
Tracy H which equals 1/2 right?
@Hiltok
@Hiltok 4 жыл бұрын
Sum = 1 - 1/2 + 1/3 + 1/4 - 1/5 ... = [1 + 1/2] + [1/3 - 1/4] + ... # this is the 'alternating partial sum' Tracy H mentions = Sum 1/(n^2+n) for n=1,2,3,... < Sum 1/n^2 = finite (= pi^2/6) # this is the dominated convergence
@alephnull4044
@alephnull4044 4 жыл бұрын
@@Hiltok Very nice. Although you wouldn't need sum 1/n^2 = pi^2/6, just sum 1/(n^2+n) = 1.
@suniltshegaonkar7809
@suniltshegaonkar7809 4 жыл бұрын
Great Michael, it is a very nice problem, never seen any problem close to this.
@willyh.r.1216
@willyh.r.1216 4 жыл бұрын
This is amazingly mind blowing stuff, man! Encore, encore, encore...please.
@norajcarnaj9207
@norajcarnaj9207 2 жыл бұрын
pk tu fais le français là mon reuf?
@ДенисЛогвинов-з6е
@ДенисЛогвинов-з6е 4 жыл бұрын
Hey, interesting problem. Thanks. You've got a tiny mistake 2:55. You've forgotten du in your substitution.
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@spideramazon5032
@spideramazon5032 4 жыл бұрын
Very nice integral evaluation. i love watching your videos a lot.
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@fivestar5855
@fivestar5855 3 жыл бұрын
That's brilliant one! Especially with geometric series representation.
@nailabenali7488
@nailabenali7488 4 жыл бұрын
I've just seen this on my book this morning and yet here I am watching your video because it's much more interesting, maybe if I start working on summable families you may do a video about it too xD! Thank you a lot !!!
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
I think this is a "famous" problem. I have seen it before, but I don't really know where.
@عمرانآلعمران-و7خ
@عمرانآلعمران-و7خ 4 жыл бұрын
@@MichaelPennMath This is work of Dr Ovidiu Furdui , you can find it in his research papers or even in his book entitled by (Limits, Series, and Fractional Part Integrals)
@TheMichaelmorad
@TheMichaelmorad 2 жыл бұрын
You could just use a little bit of reasoning: Between 1/(n+1) and 1/n the function evaluates at (-1)ⁿ which means that this expression is the sun where 1
@bautibunge737
@bautibunge737 2 жыл бұрын
Can you actually separate the sum if the series doesn't converge absolutely?
@pikkutonttu2697
@pikkutonttu2697 4 жыл бұрын
I was about to try the substitition method, but I backed off as the wikipedia article on integration by substitution gives a theorem, which assumes that the integrand is a continuous function on the interval of integration. I suppose the assumption can be relieved at least to piecewise continuity, since your initial and subsequent methods give the same result.
@cicik57
@cicik57 2 жыл бұрын
okay, you can move easier and straightvorward way. Basic idea with whole part or fraction part is to split integral on parts where this prackets give the same value. for example, you can split intevral 0..1 on : I(1/2 ..1) of -1 dx + I(1/3 ..1/2) of 1 dx + I(1/4 ..1/3) of -1 dx +...= -x evaluated in (1, 1/2) +x | (1/2..1/3) - x(1/3, 1/4)... = -1 + 1/2 + 1/2 -1/3-1/3 + 1/4 + 1/4 = the sign change harmonic series is well known and is ln2, so -1 + 2(1-ln2) = 1-2ln2
@vbcool83
@vbcool83 4 жыл бұрын
Got the answer as 1-2ln(2) - let's see if it turns out right! Very strange that this crazy power integral involving floors related to logs!
@danielhan2007
@danielhan2007 4 жыл бұрын
because you can solve this problem geometrically, i.e., alternating sums of area of rectangles with lengths of (1-1/2), (1/2-1/3), ... and height of 1 and -1.
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@stasiawright377
@stasiawright377 4 жыл бұрын
I've never seen these tricks before, thank you!
@minwithoutintroduction
@minwithoutintroduction Жыл бұрын
رائع جدا كالعادة. أحب هذه التكاملات الغريبة
@dominiquelaurain6427
@dominiquelaurain6427 4 жыл бұрын
But (-1)^(n+1)/(n+1) equals -1 (not 1) when n = 0 as you say @8:51 ...but parenthesis is then not zero later (you mistakenly substract 1 in parenthesis and add 1 outside). Check out the missing "-" on your formula @9:21 (and remove your trick adding and substracting 1).
@derekcresswell7352
@derekcresswell7352 3 жыл бұрын
I'm a tad confused by one step. Why is turning floor(u) to a constant valid? Wouldn't u take on the value of n + 1 at a single point in the integration?
@feitao13
@feitao13 2 жыл бұрын
Changing the value of a function at one single point would not affect the integration, i.e., integral of f = integral of g over some interval, if f = g except at one point.
@abdallahal-dalleh6453
@abdallahal-dalleh6453 4 жыл бұрын
Can you explain 10:00 why we did that?
@Salvador964
@Salvador964 Жыл бұрын
Gracias por tan interesante ejercicio.
@wolfmanjacksaid
@wolfmanjacksaid 4 жыл бұрын
I love the deadpan "great", keep it up!
@ByteOfCake
@ByteOfCake 4 жыл бұрын
He's just containing all his excitement inside of him :3
@HideyukiWatanabe
@HideyukiWatanabe 3 жыл бұрын
7:20 Why can you change the order of sum? The series Σ(-1)^n (1/n) and Σ(-1)^n (1/(n+1)) aren't absolutely convergent.
@HideyukiWatanabe
@HideyukiWatanabe 3 жыл бұрын
Oh, it was simple. Adding two convergent series converges to the sum of each series, looking RHS to LHS.
@operationmike8553
@operationmike8553 4 жыл бұрын
You are brilliant.
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@hypernova4334
@hypernova4334 3 жыл бұрын
How does the geometric series converge at the right endpoint of the interval x=1? Shouldn’t |x| < 1?
@davidblauyoutube
@davidblauyoutube 2 жыл бұрын
The correct answer, 1 - 2 ln 2, is negative because the integrand is -1 on the entire interval 1/2
@bookworm8414
@bookworm8414 3 жыл бұрын
The power n of -1 is either 1 or -1, why their sum is not an integer?
@cycklist
@cycklist 4 жыл бұрын
Fancy new camera angle 👌
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
Thanks!
@liyi-hua2111
@liyi-hua2111 4 жыл бұрын
(i didn't learn really well at math which sadly was my major.) would you mind to tell me: 1. how can "sum((-1)^n*(1/n-1/n+1)),n=1 to inf" split into two parts? from what i recall, alternating series can converge to different result by proper rearrangement. Won't splitting things up make a different result? 2. Considering "integral (-1)^floor(1/x), from 0 to 1" as an alternating series formed by area pieces, integration seems to be no order to converge to a certain answer, or are there any conventions or theorems for this kind of integration? it would be grateful if you could reply to my questions.
@smiley_1000
@smiley_1000 4 жыл бұрын
Didn't you forget the du when doing the u-substitution?
@ningliu3648
@ningliu3648 4 жыл бұрын
hi Penn, I got confused about some of the steps. Since you only have the property of conditional convergence, you are not allowed to change the order of summation to guarantee you reach the same number. What you did in your video, you change the order of the summation.
@dansheppard2965
@dansheppard2965 2 жыл бұрын
He did say something to justify this, something about the harmonic series, but I didn't catch it.
@feitao13
@feitao13 2 жыл бұрын
@@dansheppard2965 He said that it is absolutely convergent, which is not true.
@antoniopalacios8160
@antoniopalacios8160 4 жыл бұрын
I get -1+2ln2 for the case of the ceiling function instead of the floor function. Thank you.
@rsactuary8763
@rsactuary8763 4 жыл бұрын
I forget the problem every time he turns around and I see his back muscles.
@lluisllacer7295
@lluisllacer7295 4 жыл бұрын
How do you know that the sequence $\sum_{n=1}^\infty \int_n^{n+1}(-1)^u {1\over u^2}du$ converges to the same number as $\int_1^\infty (-1)^u{1\over 1}du$ does? I mean, the first one is a subsequence from the second. This doesn't mean that if de subsequence converges the main sequence converges too or, in case both converge, share de same limit.
@laventin4332
@laventin4332 4 жыл бұрын
Hey can you make a video on the 4th isomorphism theorem and composition series. Thanks a ton !
@anshusingh1493
@anshusingh1493 4 жыл бұрын
Thanks for giving me new insight...........its brilliant...hve subscribed ur channel...
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@zackmercurys
@zackmercurys 4 жыл бұрын
I think your mic is clipping for some reason. might require a replacement
@douglasmagowan2709
@douglasmagowan2709 4 жыл бұрын
By minute 7, we had an expression that was obvious to anyone who knew the Taylor series of ln (1+x). But rather than saying that, or deriving the Taylor series, the expanation becomes circuitious over its last 5 minutes.
@zwz.zdenek
@zwz.zdenek 4 жыл бұрын
It's about teaching, not about finishing first.
@fulla1
@fulla1 4 жыл бұрын
Oh, I hate it so much, when people write a summation sign in a hurry (or from an uncomfortable angle) that it looks like the thing at 6:27. But great video, though!
@JonathonV
@JonathonV 4 жыл бұрын
That was incredible! Very cool integral and algebra/calculus substitutions. I also really liked your camera angle switch at 6:55 so I could see the board. You should keep the camera there! And for some more unsolicited but hopefully still welcome advice: I suggest moving your “please like and subscribe” thing to the end of the video so that your promo thumbnails for other videos don't block your grand reveal! I had to scrub back and forth through the video so I could see the solution on the board. Anyway, cool problem!
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@aranbrico1005
@aranbrico1005 4 жыл бұрын
I got a little bit confused with 2
@aranbrico1005
@aranbrico1005 4 жыл бұрын
Never mind.
@Walczyk
@Walczyk 4 жыл бұрын
awesome problem!
@romanpavelko5994
@romanpavelko5994 4 жыл бұрын
But inserting x^(n + 1) to the series means that for that series to be convergent x should be -1 < x < 1. How to prove that x is between 0 and 1 only?
@김명훈-g3o
@김명훈-g3o 4 жыл бұрын
The range of x in the integral is from 0 to 1 so we only consider x in that range.
@jeremy.N
@jeremy.N 4 жыл бұрын
lol, I would have done the same thing. except that I would have made at least 3 mistakes with plus and minus. Great video, although your audio is a little much, maybe you can invest into a new micro (a ball like bprp?).
@Boe1771
@Boe1771 4 жыл бұрын
Yeah, somehow the audio seems off indeed. But please keep the great maths coming :)
@Someone-cr8cj
@Someone-cr8cj 4 жыл бұрын
THAT'S SO GREAT!
@muhammadsarimmehdi
@muhammadsarimmehdi 4 жыл бұрын
Why are you adding x around 10:12?
@pbj4184
@pbj4184 4 жыл бұрын
To get an integral and then switch the order of summation and integration to solve the problem
@pbj4184
@pbj4184 4 жыл бұрын
Michael does that a lot
@WmTyndale
@WmTyndale 4 жыл бұрын
Nice new integral form. Here is an extension: Do the result (I have not) for [1/x^n] inside the integral. May be interesting.
@adamjennifer6437
@adamjennifer6437 4 жыл бұрын
Just watch this impressive Math channel kzbin.info/door/ZDkxpcvd-T1uR65Feuj5Yg
@SlidellRobotics
@SlidellRobotics 3 жыл бұрын
I broke up into subintervals without the substitution and got the same sum without having to integrate 1/u², just 1 and -1.
@jannowak9052
@jannowak9052 2 жыл бұрын
Czy ty zauważyłeś, że w ostatnich sekundach logo twojego kanału zasłania ostateczny wynik?
@skwbusaidi
@skwbusaidi 4 жыл бұрын
In Wolframalpha ∫ (-1)^floor(1/x) dx from 0 to 1 I got 0.50... which not equal to 1-2ln(2)
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
This is one that wolframalpha and Mathematica have a hard time approximating. If you give them some help and change the bound of integration to 0.01 to 1 it works: bit.ly/2JQP5Gm
@felipelopes3171
@felipelopes3171 4 жыл бұрын
In general, you should never put an integral with a singularity in a numerical integration software, because it messes up their methods. You can try splitting it and do a change of variables to remove the singularity.
@Camll
@Camll 2 жыл бұрын
Loveeeed❤❤❤❤❤
@zapahaha
@zapahaha 3 жыл бұрын
amazing!!!
@jesusandrade1378
@jesusandrade1378 2 жыл бұрын
Maple Calculator evaluates this definite integral as 1, without the 2 ln(2) term
@DeepDeepEast
@DeepDeepEast 4 жыл бұрын
Great Content. , I should have watched those when I began my math bachelor. Now I am finished soon and I still lack basic stuff in calculus 😁
@pbj4184
@pbj4184 4 жыл бұрын
Wtf? You didn't fail even once?
@DeepDeepEast
@DeepDeepEast 4 жыл бұрын
@@pbj4184 No never failed an exam. But also didn't receive good grades sometimes and after I learned for an exam I forgot a lot of things. Or didn't dig deeper into details. The stuff I find interesting I will remember for ever.
@pbj4184
@pbj4184 4 жыл бұрын
@@DeepDeepEast Oh that makes sense. Are you working in the industry now?
@diabl2master
@diabl2master 4 жыл бұрын
I feel that the substitution was totally unecessary. I arrived at the sum on the right at 7:37 doing essentially exactly the same thing but without the substitution.
@xshortguy
@xshortguy 4 жыл бұрын
Well, in all honesty a substitution is never really necessary, it just makes things easier to see.
@Omcsesz
@Omcsesz 4 жыл бұрын
At the end, you should substitute x=1 first to the expression 1-2lnx, right?
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
The 1 is outside of the evaluation. Notice that a few steps before we had 1-2integral.
@br75857
@br75857 4 жыл бұрын
Dude you are awesome
@mryip06
@mryip06 2 жыл бұрын
amazing
@disgruntledtoons
@disgruntledtoons 4 жыл бұрын
If the floor is lava, how do we integrate it?
@jcfgykjtdk
@jcfgykjtdk 4 жыл бұрын
I got Ln(4) - 1
@erickherrerapena8981
@erickherrerapena8981 4 жыл бұрын
Increíble resolución.
@lason91
@lason91 4 жыл бұрын
awesome
@filipsperl
@filipsperl 3 жыл бұрын
this is so cool
@thecustomer2804
@thecustomer2804 4 жыл бұрын
Wait hold on. 1 - 2ln(1 + 0) = 1, so plugging in the limits of integration should get you (1 - 2ln(2)) - (1) = -2ln(2) rightt?
@Mr5nan
@Mr5nan 4 жыл бұрын
the bounds are only for the latter term, not for the 1
@GhostyOcean
@GhostyOcean 4 жыл бұрын
Some parentheses would've helped, or putting the +1 after the integral. It should be written as 1-(2ln(x+1)|x=1 x=0)
@thecustomer2804
@thecustomer2804 4 жыл бұрын
GhostyOcean Mr5nan Thanks for the tips! I make small but obvious mistakes at times
@seroujghazarian6343
@seroujghazarian6343 3 жыл бұрын
For the same integral but the roof function instead of floor, the result is the opposite
@ethanchandler3934
@ethanchandler3934 2 жыл бұрын
I would write it as 1-ln(4) but very good video’
@kkalyan5569
@kkalyan5569 4 жыл бұрын
i have done this as(i.e with 1/x)it is without substitution and ended up with the alternating series of 1-1+1-1+1...... which is of course not the correct one .Someone pls correct me .
@Zero-tq6hv
@Zero-tq6hv 4 жыл бұрын
You've probably just made an error during computation. INT from 0 to 1 (-1)^floor(1/x) dx = Sum from n=1 to inf (INT from 1/(n+1) to 1/n (-1)^floor(1/x) dx) = Sum from n=1 to inf (INT from 1/(n+1) to 1/n (-1)^n dx) = Sum from n=1 to inf (((-1)^n)/n+((-1)^(n+1))/(n+1)) After simplification we get 1-2ln(2). Quite simillar to method used in the video.
@tokajileo5928
@tokajileo5928 4 жыл бұрын
i lost it at 9:21 when that 2 appeared
@stewartzayat7526
@stewartzayat7526 4 жыл бұрын
Yay! I arrived at the same answer. I wanted to check if I was correct on wolfram alpha, but wolfram got the wrong answer lol
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
wolfram alpha and mathematica have a hard time with this one. If you set the lower bound to 0.01 instead of 0 it will approximate it correctly.
@AlfonsoNeilJimenezCasallas
@AlfonsoNeilJimenezCasallas 4 жыл бұрын
Math is crazy!
@MichaelJamesActually
@MichaelJamesActually 2 жыл бұрын
feel like I need a cigarette after that.
@mathevengers1131
@mathevengers1131 3 ай бұрын
I doubt anyone will see this comment on a 4 year old video, but still let's see. I am very very surprised to see that wolfram alpha is not able to solve this question correctly. 1 - 2ln(2) is approximately -0.38629, but wolfram alpha is saying that answer to this integral is exactly 0.4375 which makes no sense. Even desmos is showing that answer will be -0.38629, then why is wolfram alpha not able to solve if desmos is able to do it correctly?
@sword7163
@sword7163 4 жыл бұрын
that was cool
@VUrosov
@VUrosov 4 жыл бұрын
It's dx=-du/u^2
@trevorsong4345
@trevorsong4345 4 жыл бұрын
Amazing!!!
@TheFinav
@TheFinav 4 жыл бұрын
Great.
@qing6045
@qing6045 3 жыл бұрын
I am a little confused. The original integral is not absolutely convergent so you should be able to get an arbitrary value by do the integral in different ways, according to Riemann's theorem, is that correct? The results you obtained is physically meaningful, but is it mathematically rigorous? Also, at the beginning you showed the exponent is n if 1/(n+1) < x
@lesprivatrizal
@lesprivatrizal 4 жыл бұрын
Great
@JonahFoley
@JonahFoley 4 жыл бұрын
nice problem
@mashtonish
@mashtonish 4 жыл бұрын
I got immediately lost at 10:00
@ByteOfCake
@ByteOfCake 4 жыл бұрын
hes essentially just multiplying it by 1. If you use the bound he used you get 1^(n+1)-0^(n+1) which is just 1.
@housamkak646
@housamkak646 4 жыл бұрын
mannnnnnnnnnnnnnnnnnnnn this is amazingggg
@tomhase7007
@tomhase7007 4 жыл бұрын
Reordering a conditionally convergent series? Mh...
@albertreitsma988
@albertreitsma988 3 жыл бұрын
Missed the usual "that's a good place to stop"
@matthewryan4844
@matthewryan4844 3 жыл бұрын
Good place to stop: ∅
@derletsplayer9140
@derletsplayer9140 4 жыл бұрын
nice video but why does he scream?
@paulkohl9267
@paulkohl9267 4 жыл бұрын
The answer is approximately -0.338629436111989061883446424291635, which I mean, come on,, obviously! ;)
@tsurohad
@tsurohad 4 жыл бұрын
Why are you writing on a cancer board? How much do you need for an ink one?
@zwz.zdenek
@zwz.zdenek 4 жыл бұрын
It's a matter of culture. Plus this might simply be installed in that room.
@ezequielangelucci1263
@ezequielangelucci1263 3 жыл бұрын
what? the white boards are horrible (but more practical)
@tsurohad
@tsurohad 3 жыл бұрын
white boards air is less deadly
Solving a crazy iterated floor equation.
22:38
Michael Penn
Рет қаралды 142 М.
the integral that Feynman('s trick) couldn't solve
17:39
Michael Penn
Рет қаралды 9 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
A system of equations with the floor function.
12:32
Michael Penn
Рет қаралды 66 М.
Integral of ln(cos x)
13:58
Michael Penn
Рет қаралды 231 М.
Feynman's Technique of Integration
10:02
blackpenredpen
Рет қаралды 594 М.
The Dome Paradox: A Loophole in Newton's Laws
22:59
Up and Atom
Рет қаралды 1,1 МЛН
What is mathematical thinking actually like?
9:44
Benjamin Keep, PhD, JD
Рет қаралды 24 М.
A nice integration trick!
16:30
Michael Penn
Рет қаралды 22 М.
A very interesting differential equation.
16:28
Michael Penn
Рет қаралды 960 М.
A nice integral.
21:21
Michael Penn
Рет қаралды 44 М.
A classic problem from the 1982 Soviet Mathematical Olympiad
12:55
Michael Penn
Рет қаралды 99 М.
A special case of Riemann's integral identity, with @blackpenredpen
20:44