my first step was to put a=2cosA and so on, but i didn't know what to do next. Idea with cos5x is very nice but it didn't come to my mind at all.
@goodhuman41892 жыл бұрын
i dont understand at 6:08 why each cos(5theta) - 1 = 0 how did he get it from sum cos(5theta) - 1 = 0 just because the sum is equal to 0 doesnt mean each individual term is = 0 can someone explain please I'm confused
@pyrodynamic41442 жыл бұрын
every cos(5theta)-1 is less than or equal to 0. If even one of them is negative then the result would be negative, not 0. Therefore they're all 0.
@goodhuman41892 жыл бұрын
@@pyrodynamic4144 thanks a lot i was confused
@redaabakhti7682 жыл бұрын
this is astoundingly brilliant
@themathsgeek8528 Жыл бұрын
Wow this was absolutely amazing!
@lossenidiaby96772 жыл бұрын
Please put the domain of solving your equation,when you post new video, because I'm trying to solve these equation without knowing if it is in Integers or Reals perhaps in complex numbers,so that I have to watch the solution without solving the problem.Thanks you
@isrogaganyaan69232 жыл бұрын
I would say that's a brilliant approach thanks I learnt a new technique 😀
@mayoor3572 жыл бұрын
Brilliant idea for substitution, you made the problem easy
@lalitmarwaha35372 жыл бұрын
I did not expect trigonometry to show up
@خلدوناللشوفي2 жыл бұрын
You are very smart person
@sarthjoshi63252 жыл бұрын
Elegant solution 👌
@himu19012 жыл бұрын
What a mind boggling technique
@ankit..9012 жыл бұрын
Determine whether or not there are any positive integral solutions of the simultaneous equations (X1) ^2+(X2) ^2+(X3) ^2+......(X1985)^2=y^3 and (X1) ^3+(X2)^3+(X3) ^3+......(X1985)^3=z^2with distinct integers X1, X2, X3.... X1985. (USAMO 1985)
@jitendramohan75002 жыл бұрын
What's the logic behind a = 2cos A as how can one sure that a lies bw -2 to +2
@yasg3842 жыл бұрын
For any A we have -1
@jakobr_2 жыл бұрын
It’s given at the start of the problem. I agree, without that it would make no sense to bring in the cosine (unless you want to go complex but that’ll get messy)
@akirakato12932 жыл бұрын
@@yasg384 he was asking why the substitution was legitimate
@anggalol2 жыл бұрын
Because there are many trigonometric identity which we can use to solve the problem
@isrogaganyaan69232 жыл бұрын
BTW @lets think critically is the total no of solns 15 ??
@socerdemon82 жыл бұрын
should be 5 choices for 2 then 4c2 for the next, so 5*6=30
@isrogaganyaan69232 жыл бұрын
@@socerdemon8 vro I used grouping theory 5!/2!2!1!2! Which is 15
@petersievert68302 жыл бұрын
@@isrogaganyaan6923 I think you have one 2! too many in the denominator.
@isrogaganyaan69232 жыл бұрын
@@petersievert6830 but because of 2 ,2! We divide by another 2! Due to identical division don't we ??
@shivamvishwekar36522 жыл бұрын
5!/2!2!=30
@replicaacliper2 жыл бұрын
How do we know there must be two pairs
@sebastianw.12172 жыл бұрын
The complete sum is an integer so the sqrt(5) must cancel
@bubbletea-ol4lr2 жыл бұрын
There's two because when testing one pair, the sum does not equal 0, but then when two pairs are tested it does. I guess he just left it out because it's a pretty trivial step.
@replicaacliper2 жыл бұрын
@@bubbletea-ol4lr yeah idk how I didn't see that thanks
@goodhuman41892 жыл бұрын
@@sebastianw.1217 hey man can you help please i dont understand at 6:08 why each cos(5theta) - 1 = 0 how did he get it from sum cos(5theta) - 1 = 0 just because the sum is equal to 0 doesnt mean each individual term is = 0 can someone explain please I'm confused
@RGP_Maths2 жыл бұрын
There's two pairs because x^2+x-1 was a repeated factor of the quintic. Therefore each root of that quadratic is a repeated root of the quintic.
@Monolith-yb6yl2 жыл бұрын
How did you decide to consider cos 5A=...
@krzysk53882 жыл бұрын
(cos(x) + i*sin(x))^5 = cos(5x)+i*sin(5x) After expanding you can set real parts of left and right side to exual (or imaginary parts to solve for sin(5x)). You can similarly find values of sin(nx) or cos(nx) by using de Moivres formula
@Monolith-yb6yl2 жыл бұрын
@@krzysk5388 thanks, but i ask how and why did he has the idea to consider, not how to prove formula ;)
@sarthjoshi63252 жыл бұрын
I think he must have gone for cos 5a as it contains terms of cos^5 , cos^3 and cosa , which makes sense as we have the values of individual summation of this 3 terms
@Monolith-yb6yl2 жыл бұрын
@@sarthjoshi6325 its hard to understand before you watch the video