Andrew Yiu: Semiparametric posterior corrections

  Рет қаралды 564

Online Causal Inference Seminar

Online Causal Inference Seminar

Күн бұрын

Speaker: Andrew Yiu (University of Oxford)
Title: Semiparametric posterior corrections
Abstract: Semiparametric inference refers to the use of infinite-dimensional models to estimate finite-dimensional statistical functionals, which has gained particular popularity for handling causal problems. In empirical studies, nonparametric Bayesian methods such as BART (Bayesian additive regression trees) have performed strongly for point estimation, but the results for uncertainty quantification are mixed. The pivotal issue is the inherent “plug-in” nature of Bayesian inference, which means that the regularization employed in estimating high-dimensional nuisance parameters can induce a bias that bleeds into the estimation of the target functional. We introduce a method that post-processes an initial Bayesian posterior to correct the uncertainty quantification. The motivation is to fully leverage the adaptivity and predictive performance of nonparametric Bayes to tackle semiparametric problems with provision of asymptotic frequentist guarantees. Our approach could be interpreted as a stochastic version of semiparametric one-step estimation - we add a correction term to each posterior sample that incorporates both the efficient influence function and the Bayesian bootstrap. We illustrate the empirical performance of our method with the ACIC 2016 data analysis competition.

Пікірлер
All About that Bayes: Probability, Statistics, and the Quest to Quantify Uncertainty
56:36
Lawrence Livermore National Laboratory
Рет қаралды 86 М.
BSU Seminar by Andrew Yiu, University of Oxford
1:01:39
MRC Biostatistics Unit, University of Cambridge
Рет қаралды 401
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН
ВЛОГ ДИАНА В ТУРЦИИ
1:31:22
Lady Diana VLOG
Рет қаралды 1,2 МЛН
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН
Oliver Dukes: Nonparametric tests of treatment effect homogeneity for policy-makers
1:02:30
Online Causal Inference Seminar
Рет қаралды 516
Raaz Dwivedi: Integrating Double Robustness into Causal Latent Factor Models
1:09:59
Online Causal Inference Seminar
Рет қаралды 1,1 М.
Analyzing Experiments Using Causal Forests with Elea McDonnell Feit
1:26:39
Bayesian Hierarchical Models
49:19
NEON Science
Рет қаралды 15 М.
Bayesian Statistics: An Introduction
38:19
zedstatistics
Рет қаралды 146 М.
Yiqing Xu: Factorial Difference-in-Differences
56:36
Online Causal Inference Seminar
Рет қаралды 445
The Key Equation Behind Probability
26:24
Artem Kirsanov
Рет қаралды 158 М.
Statistical Inception: The Bootstrap (#SoME3)
13:50
Very Normal
Рет қаралды 31 М.