Learn how to find the length of the angle bisector of a triangle using two different methods. Quick and easy explanation by PreMath.com
Пікірлер: 150
@noahhysi86223 жыл бұрын
Amazing video! It taught me the angle bisector theorem 👍
@PreMath3 жыл бұрын
So nice of you Noah! You are awesome 👍 I'm glad you liked it! Please keep sharing premath channel with your family and friends. Take care dear and stay blessed😃
@이경섭-m2b2 жыл бұрын
@@PreMath ㅇㅇ
@xXDiver12Xx Жыл бұрын
It's 1AM and i refuse to sleep without solving that one math problem. And this, my brothers, is exactly what i was searching.
@عمرانآلعمران-و7خ3 жыл бұрын
Great video I can give a third solution to yours. Ii’s simply the area of the triangle ABC = the sum of areas of the inner triangle , then apply Heron formula to each triangle, we end up with a radical equation that can be solved for x.
@philipkudrna56433 жыл бұрын
It would be nice to show where the angle bisector theorem comes from. I definitely need to remember Al-Quashi‘s law of cosines, we didn‘t learn it in school, but I find it very useful! The Angle bisector theorem is, of course, quicker, but cannot be applied in all situations... Thank you for that neat little problem and the easy to follow explanations!
@PreMath3 жыл бұрын
Thanks Philip for nice feedback. I'll try to make a video on Angle Bisector Theorem proof pretty soon! You are awesome 👍 Take care dear and stay blessed😃
@Ramkabharosa3 жыл бұрын
Proof of Angle Bisector Theorem: By the Sine Rule, sin(ADC)/|AC| = sin (ACD)/|AD| (Eq.1) and sin(BDC)/|BC| = sin (BCD)/|BD| (Eq.2). Since sin(ADC) = sin(BDC) (supplementary angles) and sin (ACD) = sin (BCD) (equal angles), dividing Eq.2 by Eq.1 gives us |AC|/|BC| = |AD|/|BD|. So |AC|/|AD| = |BC|/|BD| (cross exchanging), i.e., a/b = c/d and we are done. Trigonometry is Empress when it comes to Geometry! . Proof of x² = ab - cd: By the Cosine Rule, c² = x² + a² - 2ax.cos(ACD) (Eq.1) and d² = x² + b² - 2bx.cos(BCD) (Eq.2). Since cos(ACD) = cos(BCD), b.(Eq.1) - a.(Eq.2) gives us b.c² - a.d² = (b-a).x² + b.a² - a.b² = (b-a).x² - (b-a).ab. And since ad = bc, we further get b.c² - a.d² = ad.c - bc.d = - (b-a).cd = (b-a).x² - (b-a).ab. Hence (b-a).ab - (b-a).cd = (b-a).x². Thus (b-a).x² = (b-a).(ab - cd) and so x² = ab - cd, provided (b-a) is not zero. But if b-a = 0 then a=b & c=d, so we get from Pythagoras' Theorem that x² = a² - c² = ab - cd. Algebra is Queen! .
@YogeshSharma-ys3hm3 жыл бұрын
@@Ramkabharosa hey bro thanku for the explanation but can you solve this question I am getting square root as negative by the cosine method whole applied iff. AB=8 , AC=8 ,BC=12 AD is an angle bisector then what is AD?
@Ramkabharosa3 жыл бұрын
@@YogeshSharma-ys3hm This is an almost trivial problem because if |AB| = |AC|, then AD will be the bisector of angle CAB and also the perpendicular to BC. So, |AD|² would be 8² - 6² = 64 - 36 = 28. Hence |AD| would be √28 = 2√7. Perhaps, you meant to say that CD is the angle bisector of ACB. Then the formula in the video would give you that a = |AC| = 8, b = |BC| = 12, & c = |AB| = 8. And we would get 2/3 = 8/12 = a/b = m/(8 - m). So 16 - 2m = 3m and thus 5m = 16. So m = 16/5 = c and 8 - m = 24/5 = d. Hence x² = ab - cd = 8(12) - 16(24)/25 = 96.(1 - 4/25) = 96(21)/25 = (16)(9)(14)/25. So x = (12/5)√14. .
@liamdacre1818 Жыл бұрын
I prefer the first method. You explained it very well and it’s much clearer now
@evanj35353 жыл бұрын
I used the law of cosines to get Angle BCA and Angle CAB. Angle DCA is half of angle BCA, and 180 - Angle BCA - Angle CAB = Angle CDA. Then I used the law of sines to get CD.
@PreMath3 жыл бұрын
Thanks Evan dear for the feedback. You are awesome 👍 Keep smiling😊
@walker55able3 жыл бұрын
Again impressive i wasn't aware of method 1 formula which seemed less involved!
@sastipadasadhu22543 жыл бұрын
I have iearnt many types maths from your channel, thanks for you
@aGuyWithConscience3 жыл бұрын
Would you prove x^2=ab-cd, please?
@triathlon.753 жыл бұрын
kzbin.info/www/bejne/ZovaaHiKeNyVpqc
@theodoresweger49483 жыл бұрын
Thank you it has been a long time since I had a class in geometry...
@ExpressStaveNotation3 жыл бұрын
So what is the theorem that "x^2 = ab - cd" called, and how do you prove this?
@triathlon.753 жыл бұрын
kzbin.info/www/bejne/ZovaaHiKeNyVpqc
@tolikbror_19273 жыл бұрын
I study in Russia and i remember this theorem Thank you
@최희준-f9r3 жыл бұрын
I visit this site from time to time. This site is very interesting to me. Because I can think of myself 40 years ago. But I don't know why X² is the same as ab-cd in this problem. I want to know the reason why X² is the same as ab-cd in this problem. Thanks for reading it.
@HappyFamilyOnline3 жыл бұрын
Great video👍 Thank you so much 😀
@PreMath3 жыл бұрын
You are so welcome! Cheers😀
@someoneistyping Жыл бұрын
Please help me out to prove this equation, x² = ab - cd?
@devsgkquizdevakrishnan93083 жыл бұрын
Very interesting.Can you please say which app you use to make videos?
@PreMath3 жыл бұрын
So nice of you Dev dear! You are awesome 👍 I'm glad you liked it! We use Camtasia TechSmith utility! Please keep sharing premath channel with your family and friends. Take care dear and stay blessed😃
@leonardogu430519 сағат бұрын
Thanks I’m learning this right now and that formula is not in our text book so I’m not sure I will use it. Thanks though
@garypaulson52022 жыл бұрын
Fun video sir, thank you
@ebi2ch3 жыл бұрын
Construct a rectangle with AB as an edge and C as a path through it, and let E and F be the vertices of the edge through C, respectively. At this point If CF=a and BF=b, then (12-a)^2+b^2=100 and a^2+b^2=64. If we solve this simultaneous equation, we get a=9/2, and b^2=175/4. If we draw a vertical line from C to AB and set the intersection point as G, we get DG=(16/3)-(9/2)=(5/6). So x^2=(5/6)^2+b^2=400/9. x=20/3.
@PreMath3 жыл бұрын
Great tip dear! You are awesome 👍 Take care dear and stay blessed😃
@diablo8883 жыл бұрын
still needed to calculate 16/3 first
@asadmuyinda31115 ай бұрын
After finding M , use Stewart’s theorem to get X . Thanks for the explanation
@holyshit9223 жыл бұрын
I used law of sines and law of cosines Do we have isosceles triangle here
@tomcruise67383 жыл бұрын
I knew the second method but didn't know the first one. Alternatively I knew the direct formula to find the length of angle bisector and that is, {Root of 2(10*8*15*3)}/(10+8)=20/3 Where 15 is the semi perimeter and 3 came by semi perimeter 15 minus 12, the side on which the angle bisector lies.
@auridannr3 жыл бұрын
Please. What is the origin of the formula x² = ab - ac?
@triathlon.753 жыл бұрын
kzbin.info/www/bejne/ZovaaHiKeNyVpqc
@kaliprasadguru19213 жыл бұрын
Sir, will you be kind enough to give the proof of X² = a.b - c.d.
@bwahf46853 жыл бұрын
Take à look at the section 'proof 2' to find out the solution ⟹ proofwiki.org/wiki/Length_of_Angle_Bisector 👍
@kaliprasadguru19213 жыл бұрын
Thank you sir . No doubt it gives the length of angle bisector . But it is not the proof of the formula used in step 2 in this video ie. X² = a.b- cd. Regards .
@bwahf46853 жыл бұрын
@@kaliprasadguru1921 Notice that the demonstrated step ' d² = bc-BD.DC' is present in the 'proof 2' demonstration, don't pay attention to the final result... just this step that is proved. 😉
@kaliprasadguru19213 жыл бұрын
Got it . Many many thanks .
@mryip063 жыл бұрын
you can use the following 2 points to prove that. 1. cos law twice with the 2 angles (let's use θ and 180°-θ to denote them) on the base with length of 12. 2. a/b = c/d
@marhsfirst3 жыл бұрын
Nice work
@ChocoBunnie3 ай бұрын
I know this is an old video but thank you! i needed this formula for a garment im sewing together and I couldnt for the life of me remember how to do it 😂
@Aryan_Giri013 жыл бұрын
3:47 what is the proof of x² = ab-cd ?
@bwahf46853 жыл бұрын
Take à look at the section 'proof 2' to find out the solution ⟹ proofwiki.org/wiki/Length_of_Angle_Bisector 👍
@Aryan_Giri013 жыл бұрын
@@bwahf4685 Thanks bro 🙏🙏🙏
@triathlon.753 жыл бұрын
kzbin.info/www/bejne/ZovaaHiKeNyVpqc
@ashokme19763 жыл бұрын
Could you share the proof for the theorem: x^2=(a*b)-(c*d) ?
@bwahf46853 жыл бұрын
Take à look at the section 'proof 2' to find out the solution ⟹ proofwiki.org/wiki/Length_of_Angle_Bisector 👍
@ashokme19763 жыл бұрын
Thank you
@triathlon.753 жыл бұрын
kzbin.info/www/bejne/ZovaaHiKeNyVpqc
@ROCCOANDROXY3 жыл бұрын
Using the angle bisector theorem a/b = c/d implies ad - bc = 0. Your actually using the law of cosines to derive x^2 = ab - cd. Let m(angle(ACD)) = m (angle(DCB)) = theta. Using law of cosines on triangle(ACD) and triangle(DCB) implies c^2 = a^2 + x^2 - 2axcos(theta) d^2 = b^2 + x^2 - 2bxcos(theta) implies b|(2axcos(theta) = a^2 + x^2 - c^2) -a|(2bxcos(theta) = b^2 + x^2 - d^2 implies (a - b)x^2 = a^2b - ab^2 + d^2a - c^2b = ab(a - b) + ad^2 - dbc + acd - bc^2 + dbc - acd = ab(a - b) + d(ad - bc) + c(ad - bc) - dc(a - b) = (a - b)(ab - cd) implies x^2 = ab - cd. Deriving the angle bisector theorem: Let Let m(angle(CDA)) = lambda implies m(angle(CDB)) = 180 - lambda. Area(triangle(ACD))/Area( triangle(DCB)) = 1/2 * a * x * sin(theta)/(1/2 * b * x * sin(theta)) = a/b = 1/2 * c * x * sin(lambda)/(1/2 * d * x * sin(180 - lambda)) = c/d implies a/b = c/d. In general, letting AC = a, CB = b and AB = c with AD = y implies DB = c - y and the angle bisector CD = x and m(angle(ACD)) = m (angle(DCB)) = theta. a/b = y/(c - y) implies y = ac/(a + b) implies c - y = bc/(a + b) implies y(c - y) = abc^2/(a + b)^2 implies x^2 = ab((a + b)^2 - c^2)/(a + b)^2 implies x = sqrt(ab((a + b)^2 - c^2)/(a + b)^2).
@rangaswamyks82873 жыл бұрын
X^2=ab-cd Could u please give proof sir Yours.... Swamy Thank u sir.. You solved it beautifully and easilly
@triathlon.753 жыл бұрын
kzbin.info/www/bejne/ZovaaHiKeNyVpqc
@c.mohanchandrasekaran8166 Жыл бұрын
call the half angle of bisected angle to be y. use the idea of area of a triangle is 1/2xbcxSinA the two t triangles, and also for the whole triangle, Find the area of triangle using the formula square root of [ d(s-a)(s-b)(s-c)] , s =a+b+c/2, (P) Equate them , thereby you will get SinA = 3X SQUARE ROOT OF7/8. Using this you can calculate SinA/2 = Square root of 7/4.(1) The sum of the areas of the two triangles is 9Xx= 5 x square root of7/3 SinA/2( this is obtained by equating this value with the area got using(P) [2], substituting (1) in [2], we get the value X = 20/3. May be this method is laborious.
@johnnath41373 жыл бұрын
There is a formula for the angle bisector: AD² = bc(1 - a²/(b + c)²) = )10 x 8)(1 - (12²/(10 + 8)²) = 80(1 - 80/324) =80 x 244/324 = 80 x 5/9 = 400/9 ⇒ AD = 20/3.
@kalyanbasak64943 жыл бұрын
Namaskar sir,x=8.23333unit I have tried sir thanks u r genius
@ASHAIKH13 жыл бұрын
Wrong because you said AD is congruent to BD by using sign of congruency, so they have to be equal.
@johnbrennan33723 жыл бұрын
Two applications of the cosine rule would be my preferred method. First method presupposes knowledge of formulae which I was not aware of, but would love to know how they are derived.
@PreMath3 жыл бұрын
Thanks John for the visit! You are awesome 👍 Take care dear and stay blessed😃 Kind regard
@jamesdo38413 жыл бұрын
The very first thing to determine is AD and BD before you can proceed with the 2 methods. In your video, you determined AD and BD under the angle bi-sector method.
@devondevon43663 жыл бұрын
Answer = 6.6666 or 20/3 according to the angle bisector theorem, the line of length 12 will have the same ratio as 10 and 8 and those two numbers 20/3 (6.666) and 16/3 (5.333) since 20/3 over 16/3=20/36 or 10/18. That is, 6.666/5.333 = 10/8 or 1.25 Using SSS (10, 8, and 12) the angle that bisected = 82.819 degree which implies half = 41.4095 degree Using SAS and the sides 10, 6.666 and angle 41.4095 yields 6.6666
@PreMath3 жыл бұрын
Awesome my friend😀
@soufianeaitabbou37273 жыл бұрын
I found an other way to find x is to calculate the cos of the angle (ACD) in the triangle ACD on the function of x; then calculate the cos of the angle (DCB) in the triangle ABD on the function of x; and we know that the two angles are equals (because of the bisector) so we are going to find an equation where the unknown is x ; and we are going to find the same result.
@ΑλέξανδροςΓιακαλής3 жыл бұрын
Heron formula to find the area of the triangle using the semi perimeter. Then knowing the base and the area of the triangle you can find the height of the triangle. Then use Pethagorem on one of the 2 triangles and then cosin law
@HafsaSikanderKhan3 жыл бұрын
ماشاءاللّٰه ❤
@PreMath3 жыл бұрын
Thanks dear!
@gemalbenallie10073 жыл бұрын
I watched and liked the video
@PHANTOMFACTS10 Жыл бұрын
how is x2 = ab-cd
@242math3 жыл бұрын
both work but I prefer using the angle bisector theorem
@PreMath3 жыл бұрын
Thanks my dear friend for your candid feedback. You are awesome 👍 Take care dear and stay blessed😃
@kamarinelson3 жыл бұрын
I use the law of cosines to find the angle opposite the side of length 12 symbolically. Then I calculated the areas of all 3 triangles symbolically as well. Knowing that the areas of the 2 smaller triangles adds to the area of the larger one, that gives us the 1 equation needed to solve for x. I didn't solve for anything other than the angle and x.
@kamarinelson3 жыл бұрын
I had to make use of the double angle formula, which further demonstrated why I needed to solve for the angle specifically.
@dhrubajyotidaityari92403 жыл бұрын
∆ABC, a/b=10/8, a+b=12, a=20/3 CosB=(10²+400/9-x²/(2.10.20/3) from ABD CosB =10²+12²-8²)/(2.10.12), from∆ABC. Equating, x=20/3
@raulcastrosanchez53223 жыл бұрын
aplico teorema de la bisectriz y stewart y sale en dos patadas
@shashwatvats77863 жыл бұрын
This question is only of two steps 1. Application of angle bisector theorem. 2.construction of altitude from c on ab and applying the pythagoras theorem and then one line simplification.
@kevinmadden16452 жыл бұрын
X also is equal to 25/3 . Use Law of Cosines on each triangle.. Ambiguous Case of the Law of Sines ..
So nice of you Hafsa dear! You are awesome 👍 I'm glad you liked it! Please keep sharing premath channel with your family and friends. Take care dear and stay blessed😃
@arturovinassalazar3 жыл бұрын
But these formula used at fist method isnt Stewart Theorem!!
@billrundell20973 жыл бұрын
In the drawing it shows AD is = DB AD = 6 and db=6
@PreMath3 жыл бұрын
Dear Bill, CD is an angle bisector, not a median! Therefore, we can't say AD=BD Thanks dear for you input. You are awesome 👍 Take care dear and stay blessed😃
@billrundell20973 жыл бұрын
@@PreMath In the drawing you labeled ad= db You used the double slash lines on both ad=db But as you said, you inferred it to be an angle bisector. Your procedure of angle bisector is correct.
@sakshamsingh17783 жыл бұрын
I used stewart + angle bisector theorum
@poppyaustin73152 жыл бұрын
Done, but with your hints
@jaaaayt.203 жыл бұрын
watched and liked the video
@asadmuyinda31115 ай бұрын
Immediately after Bisector theorem ; use Stewart’s theorem
@shrikantaroy67113 жыл бұрын
Require to show ,x2=ab-cd please.
@triathlon.753 жыл бұрын
kzbin.info/www/bejne/ZovaaHiKeNyVpqc
@WaiWai-qv4wv3 жыл бұрын
Thanks
@PreMath3 жыл бұрын
Welcome dear Thanks dear for the feedback. You are awesome 👍 Take care dear and stay blessed😃
@WaiWai-qv4wv3 жыл бұрын
Very thanks. How are you?
@rangaswamyks82873 жыл бұрын
You saying fill in the blanks No... You have to say "let us substitute the values" sir
@renatosouza23433 жыл бұрын
Very well.
@tgx35293 жыл бұрын
((1/2) sin alfa*x*8)+((1/2)* sin alfa*x*10=(1/2)* sin(2 alfa)*10*8. We have then (cos alfa)*160/18=x. From cosine theory se have cos(2alfa)=1/8====> cos alfa=sqrt((1+1/8)/2)
@luigipirandello59193 жыл бұрын
Great
@leumasanogyygona54003 жыл бұрын
Nice.
@charlesbromberick42473 жыл бұрын
8-10-12 is NOT a right triangle; 6-8-10 is.
@ASHAIKH13 жыл бұрын
You used sign of congruency in wrong place otherwise you're right.
@jonthebob21592 жыл бұрын
Or take sqrt((10x8)-(20/3 x 16/3)) and gets you 20/3
@theophonchana50253 жыл бұрын
x = Square root of (400÷9) = 20÷3
@theophonchana50253 жыл бұрын
#cosine #Trigonometry
@rangaswamyks82873 жыл бұрын
Using law of cosines is easy
@devondevon43663 жыл бұрын
x=6.6666 or 6 and 2/3
@PreMath3 жыл бұрын
Thanks my dear friend for the feedback. You are right on! 👍 Take care dear and stay blessed😃
@TechToppers3 жыл бұрын
Stewart Theorem + Angle Bisector Kill
@فراسمعابره-ج5خ2 жыл бұрын
اذا كان cB=16/3 فإن الامر لا يحتاج إلى كل هذا العناء والتعب
@theophonchana50253 жыл бұрын
cos (angle) = 18÷24 = 9÷12 = 3÷4 = 0.75
@sh5552223 жыл бұрын
رائع
@rajendrasheregar31133 жыл бұрын
Shift x + axis LevO sidE to righT angLE ----- when righT angLE is formeD at PoinT 5 of 12 besides midPoinT --- 8 is eveNumber noT oDD so righT angLE forms odd because odd + odd forms righT angLE constancY --- to eveNumber helDs righT angLE ----- thus x canT be 6 oR 7 becausE 8 doesnT change to 9 is x forMs 6 ---- thus aFteR shifted to righT angLE -- x remains 5
@ЮрийЯкубовский3 жыл бұрын
есть готовая формула CD={√AC*CB(AC+CB+AB)*(AC+CB-AB)}/(AC+CB)=20/3
@shreyanshpatel07073 жыл бұрын
stewart's theorm
@Ramkabharosa3 жыл бұрын
Proof of Angle Bisector Theorem: By the Sine Rule, sin(ADC)/|AC| = sin (ACD)/|AD| (Eq.1) and sin(BDC)/|BC| = sin (BCD)/|BD| (Eq.2). Since sin(ADC) = sin(BDC) (supplementary angles) and sin (ACD) = sin (BCD) (equal angles), dividing Eq.2 by Eq.1 gives us |AC|/|BC| = |AD|/|BD|. So |AC|/|AD| = |BC|/|BD| (cross exchanging), i.e., a/b = c/d and we are done. Trigonometry is Empress when it comes to Geometry! . Proof of x² = ab - cd: By the Cosine Rule, c² = x² + a² - 2ax.cos(ACD) (Eq.1) and d² = x² + b² - 2ax.cos(BCD) (Eq.2). Since cos(ACD) = cos(BCD), b.(Eq.1) - a.(Eq.2) gives us b.c² - a.d² = (b-a).x² + b.a² - a.b² = (b-a).x² - (b-a).ab. And since ad = bc, we further get b.c² - a.d² = ad.c - bc.d = - (b-a).cd = (b-a).x² - (b-a).ab. Hence (b-a).ab - (b-a).cd = (b-a).x². Thus (b-a).x² = (b-a).(ab - cd) and so x² = ab - cd, provided (b-a) is not zero. But if b-a = 0 then a=b & c=d, so we get from Pythagoras' Theorem that x² = a² - c² = ab - cd. Algebra is Queen! .
@KudosJkp2 жыл бұрын
That's really great.
@ionelpatriche68663 жыл бұрын
Frumos!
@reforma715 Жыл бұрын
👍👍👍
@theophonchana50253 жыл бұрын
x^(2) = 400÷9
@anushkabhandari95083 жыл бұрын
5.3333
@davidbrisbane72063 жыл бұрын
I found x. It is in the middle of the diagram 🤣😂.
@theophonchana50253 жыл бұрын
#lawofcosines
@theophonchana50253 жыл бұрын
x variable
@theophonchana50253 жыл бұрын
m = 20÷3
@marciec68623 жыл бұрын
👍🏻
@anushkabhandari95083 жыл бұрын
0.75
@anushkabhandari95083 жыл бұрын
44.4444
@anushkabhandari95083 жыл бұрын
180
@anushkabhandari95083 жыл бұрын
144
@anushkabhandari95083 жыл бұрын
4
@giuseppemalaguti4353 жыл бұрын
8
@anushkabhandari95083 жыл бұрын
100
@anushkabhandari95083 жыл бұрын
6.6666
@anushkabhandari95083 жыл бұрын
1
@rachajhie10973 жыл бұрын
are you crazy?
@leonardogu430519 сағат бұрын
Thanks I’m learning this right now and that formula is not in our text book so I’m not sure I will use it. Thanks though