Thank you maam! We still miss you from my diploma days
@nishantaridamankumar93762 жыл бұрын
Program implementing the above algorithm: import numpy as np NAMING_ARRAY = [] k = int(input()) nodes = int(input()) adjacency = [] strength_adjacency = nodes*nodes for i in range(strength_adjacency): if i < nodes: NAMING_ARRAY.append(f"N{i+1}") adjacency.append(int(input())) A = np.array(adjacency) A.shape = (nodes, nodes) A_T = np.transpose(A.copy()) u = np.ones((nodes, 1)) v = np.matmul(A_T, u) u = np.matmul(A, v) n = 1 while k >= n: print() print("ITERATION NO: ", n) hub = u.copy().flatten() hub_normalizer = 1/sum(np.square(hub))**0.5 authority = v.copy().flatten() authority_normalizer = 1/sum(np.square(authority))**0.5 print("Node\tHub Scores\tAuthority Scores") for i in range(0, nodes): print(f"{NAMING_ARRAY[i]}\t{round(hub[i], 3)}\t\t{round(authority[i], 3)}") sorted_hubs = sorted(zip(NAMING_ARRAY, hub), key=lambda x : x[1], reverse=True) sorted_authorities = sorted(zip(NAMING_ARRAY, authority), key=lambda x : x[1], reverse=True) print() print("HUB:", end=" ") is_a_tie = False for node, _ in sorted_hubs: if np.count_nonzero(hub == _) > 1: is_a_tie = True print(node, end=" ") if is_a_tie: print("{Tie}") else: print() print("AUTHORITY:", end=" ") is_a_tie = False for node, _ in sorted_authorities: if np.count_nonzero(authority == _) > 1: is_a_tie = True print(node, end=" ") if is_a_tie: print("{Tie}") v = v*authority_normalizer u = u*hub_normalizer n += 1 print() # 3
@rhysparsons24744 жыл бұрын
This is good up to a point. To calculate the next iteration, it isn't enough just to re-normalise the values. You have to re-calculate the authorities from the previous iteration's hubs; update the hubs from that; then normalise. For k=2, the numbers should look quite different. See en.wikipedia.org/wiki/HITS_algorithm#Pseudocode for pseudocode for doing the same thing.
@amur_3 жыл бұрын
Yeah, I was wondering the same thing. Looks like what she's done here isn't right.
@architlatkar25034 жыл бұрын
for each iteration of k, we are simply taking unit vectors so it would naturally come the same in 2 iterations. So how is it useful? In some other cases such as page rank algorithm, i saw that the ranks converge to some values over several iterations, but here its not the case. Could you clear this doubt please?
@hamzamaqsood13 жыл бұрын
Its probably the wrong way.. for k=2, we get updated hub vectors by multiplying Ateanspose with previous Hub vector
@whatsaappstatus6452 Жыл бұрын
You explain every topic very easy and perfect 💯🤝thanks
@techinfo65987 жыл бұрын
thanx a lot mam., your teaching was so useful....
@cbh46784 жыл бұрын
Thanks maam. I think there are some doubtful figures under K = 2. What I mean is that, during calculating authority score under K = 2 , N1 and N2 received different hub socres (respectively 0.445 from N3, 0.623 from N1). However you count both as same figures. This is why I am confused....
@balasahebgadekar4253 жыл бұрын
Madam,I am not getting what is wigen factor,why it takes and what is its importance.Then why you take damping factor as 0.8, .What are the restrictions on Matrix. Is any special type of matrices or not
@TheTerribleDreamer6 жыл бұрын
This is a very helpful video, thank you
@hamzabilal64654 жыл бұрын
Wow aapnay bohat acchay say samjhaya hai ayr aik hamaray sir jinko sirf bhaagnay ki jaldi rehti hai 😡😡😡 thanks a lot
@doyeldesarkar22762 жыл бұрын
Hello mam, if you can upload a video on Latent semantic Indexing it will be great.. Looking forward.
@parthgulati49147 жыл бұрын
we are dividing all the ranks by the same value so won't they remain the same, no matter how many iterations it takes?
@shivakumar-fq1mc6 жыл бұрын
we have to multiply A Transpose with new hub weights to get new authority vector
@muhammadnaveed50566 жыл бұрын
waaaoo mam u r great teacher in world u make it very simple for me.
@zeetennayak10566 жыл бұрын
mam your topic is HITS Algorithm for BIg data analytics but through out the video you have discuss about how to calculate hub and authority ranking. i dont find anything related to Big data analytics. HITS algorithm for ranking would be better.
@ganeshvadcar80986 жыл бұрын
Wow, explanation made so simple and easy to understand
@AnuradhaBhatia6 жыл бұрын
Ganesh Vadcar Thank you
@leanderpereira52572 жыл бұрын
What about spider traps
@amarimuthu7 жыл бұрын
Hi Can you please make a video with an example for "Dynamic time warping" for Time series . I just could find any good resources on KZbin. Thanks.
@amanchoudhary45473 жыл бұрын
Awesome tutorial thanks ma'am
@saurabhsingh89965 жыл бұрын
Would have been a great video. if question and use of variables were shown in a better way
@parttimedude54403 жыл бұрын
Thank You, Ma'am!
@blueguy55883 жыл бұрын
Extremely helpful, thank you!
@VirenJoshiOfficial5 жыл бұрын
In hubs and authorities In 2nd iteration are we suppose to use normalised value or normal values of h & a ?
@AnuradhaBhatia5 жыл бұрын
Normal
@0625faith6 жыл бұрын
thank you sooo much. It helps me a lot
@sibinthomas96816 жыл бұрын
No fake Accent. Crisp to the point explanation. Thanks a lot!!
@parshvajain45566 жыл бұрын
She still has to learn a lot from you to be where you are right now.
@rashijain42077 жыл бұрын
Nice Explanation mam..Please can u upload video on k-mediods with example
@AnuradhaBhatia7 жыл бұрын
Rashi Jain ok..will put
@adarshmahto56457 жыл бұрын
Hello maam your videos really very helped to us .. thank you for making these videos :) i have little confusion at @4:02 where if in-degree is 4 than outdegree will be 0 but u were mention as 1 . for ( node 4 )
@AnuradhaBhatia7 жыл бұрын
Hi, The out degree is 1, as the node points to itself.
@adarshmahto56457 жыл бұрын
Thank you :)
@AnuradhaBhatia7 жыл бұрын
Best of Luck.
@adarshmahto56457 жыл бұрын
Thank you :) ppr was good :) maam plz upload DWM videos :)
@AnuradhaBhatia7 жыл бұрын
Good. Sure will do.
@KarthikBalan275 жыл бұрын
Thank You Mam. Best explanation.
@abhishekhawale60526 жыл бұрын
Mam in exams they given a diagram to find hubs and authority where there are 7 edges so how can we consider 7*7 matrix
@AnuradhaBhatia6 жыл бұрын
yes
@abhishekhawale60526 жыл бұрын
So answer will be much more lengthy than this na?
@AnuradhaBhatia6 жыл бұрын
yes.. can you send me the diagram.
@nikhildange1236 жыл бұрын
If k is not mention in the question then can we assume as k=1?
@aswani44027 жыл бұрын
very nice explanation mam , thank you
@ganeshvadcar80986 жыл бұрын
is it necessary to have Adjacency matrix to solve this problem? but ma'm the matrix that you have considered do not have diag elements "0" so I am confused here. please clear my doubt
@AnuradhaBhatia6 жыл бұрын
Ganesh Vadcar kindly mail ur doubt..go on to the website and post a query please
@ganeshvadcar80986 жыл бұрын
yes, I have done that, thank you
@mehtabahmed57257 жыл бұрын
i want to ask some other question regarding the information retrieval techniques kindly advise me from which forum i can join and able to ask the questions? w8ng for reply
@AnuradhaBhatia7 жыл бұрын
Mehtab Ahmed Hello, What queries you have regarding Information Retrieval, kindly let me know. Regards
@mehtabahmed57257 жыл бұрын
Hello Madam
@mehtabahmed57257 жыл бұрын
I have many quetion but this time i want to ask Is page ranking query dependent? What is Faign Algorithm
@jayeshchindarkar7 жыл бұрын
thank u maam....ur videos of BDA n CSM helped us a lot in our exams
@AnuradhaBhatia7 жыл бұрын
Thank you so very much.
@divyasampathirao73066 жыл бұрын
mam was the intial hub vector 'u' is same for all the given graphs?
@AnuradhaBhatia6 жыл бұрын
Divya Sampathirao yes
@divyasampathirao73066 жыл бұрын
@@AnuradhaBhatia mam tq so much ....this video helped me a lot
@grinalpatel10127 жыл бұрын
Superb mam …thanks alot
@kunalborge54747 жыл бұрын
yes it was because of you my papar was damn easy maam greatwork..
@rahulbharsadiya28976 жыл бұрын
what is the hadoop architecture?,is it the same HDFS ?,plz reply fast.thanks in advance
@AnuradhaBhatia6 жыл бұрын
Rahul Bharsadiya yes...it is Hadoop Distributed File System..
@AnuradhaBhatia6 жыл бұрын
Rahul Bharsadiya Refer to my notes on my site for Big Data
@AnuradhaBhatia6 жыл бұрын
Rahul Bharsadiya all the best
@rahulbharsadiya28976 жыл бұрын
Thanks for your videos, support and for sure the notes ,thanks for good wishes
@AnuradhaBhatia6 жыл бұрын
You are always welcome. You are from which college? Any help please feel free to contact.
@namansingh77213 жыл бұрын
How can you normalize already normalized vectors, I guess each time we got to multiply by matrix but you are simply normalizing again so no matter what answer won't change. sorry to say but I think wrong concept
@marcomarkproductions6 жыл бұрын
what is 'k'
@AnuradhaBhatia6 жыл бұрын
Step count in algorithm implementation. A k-step application of the Hub-Authority algorithm entails applying for k times first the Authority Update Rule and then the Hub Update Rule.