Back again, thank you for making calculus doable to revise! My friends and I really appreciate you!
@turksvids Жыл бұрын
Nice! I can tell your working hard. I hope it's paying off!
@danial11139 ай бұрын
Stuff I don’t fully understand in weeks at school makes so much sense when you explain!
@turksvids9 ай бұрын
Happy to help!
@lilac-84422 жыл бұрын
absolute banger vid thanks so much for this
@turksvids2 жыл бұрын
thanks! please share with anyone you think it might help!
@arkap85969 ай бұрын
Test tomorrow after being sick for a week and a half, my friend sent me this to try and help, thank you and I hope I don’t bomb this thing
@turksvids9 ай бұрын
hope you feel better and ace your test! good luck!
@dreamsbyiris10 ай бұрын
thank you!! great review for my unit 8 test tmrw🙏
@turksvids9 ай бұрын
hope the test went well! good luck studying for the exam!
@mely10563 жыл бұрын
thank you! would love to see a review vid for unit 9 & 10 :D
@lucasliftslight Жыл бұрын
Man you are such a life saver
@cardude1414 Жыл бұрын
facts
@ashvinjaishankar38132 жыл бұрын
Regarding the arc length example you did with a left Riemann sum: if you were told that f’(x) is strictly increasing (or decreasing), could you be asked if the approximation of the arc length of f is an overestimate or underestimate? Or is that based on the concavity of the function?
@turksvids2 жыл бұрын
(I confess to not actually looking at the problem, but I'm assuming f is the function we're finding the arc length of...) this is a good question. I'm sort of thinking it through as I type. Once we write the integrand we have a new function that we're approximating.so if that function is increasing/deceasing we'll know what kind of error we get. Is knowing f' is increasing/decreasing enough to tell us that? I seems like it, f' increasing tells us f'' is positive (let's say), so if the integrand is g = sqrt(1+(f')^2) then g' = f''/sqrt(1+(f')^2). the denominator is always positive, so the whole sign of this is determined by the sign of f'', which we know. So I think it's enough info! What do you think?
@ashvinjaishankar38132 жыл бұрын
@@turksvids that was my thought as well, except I think the numerator of g'(x) would be f''(x) * f'(x) by the Chain Rule
@turksvids2 жыл бұрын
Of course! Forgot the chain rule…that’s embarrassing. Good thing it was only on the internet!
@hellohi-mj8ho Жыл бұрын
Your videos are very human thank you
@turksvids Жыл бұрын
Thank you! Good luck with your studies!
@gabeb68892 жыл бұрын
You are a goat and a scholar. Thank you.
@danhimelstein1439 Жыл бұрын
29:15 Volume with Cross Sections
@turksvids Жыл бұрын
In case you need/want them: 00:00:27 (8.1) Average Value of a Function 00:04:10 (8.2) Connections to position, velocity, and acceleration 00:09:00 (8.3) Accumulation function and definite integral applications 00:14:11 (8.4, 8.5) Area between curves 00:24:39 (8.6) Area between curves that intersect more than once 00:29:14 (8.7, 8.8) Volumes with cross sections (square, rectangle, triangle, semicircle) 00:43:03 (8.9, 8.11) Volumes of revolution around x and y axis (disks/washers) 00:49:34 (8.10, 8.12) Volumes of revolution around other axes 01:00:59 (8.13, BC Only) Arc length of a function
@SaltJackalope2 жыл бұрын
Very helpful
@brxyann2 жыл бұрын
underrated
@nathanxabrera61693 жыл бұрын
great vid helps alot :)
@Ak-bl3tq Жыл бұрын
fire video im passing calc
@zainanwar6827 Жыл бұрын
Thanks Beast.
@kelvisaisawesome Жыл бұрын
6:44 what…? ☹️
@turksvids Жыл бұрын
it's a thing!
@kelvisaisawesome Жыл бұрын
@@turksvids “gretchen, stop trying to make “fetch” happen. It’s never going to happen!” … but it happened…