Spent 40 mins on its theory and couldn't learn shit. 5 mins into this video and I feel like a pro. Thanks bro!
@prashantmhatre92254 жыл бұрын
I have done my engineeraing in 2010, But agar aap tabhi rahte to bhai , mai topper ban jata tha... awesome explanation , thanks
@ashishdass160514 күн бұрын
You are a saviour bro....6 years down the lane and this video is helping students pass their semester exams... you have our good wishes with you bro❤❤
@gautamverma97622 жыл бұрын
Possibly the best explanation of apriori algo out there on YT.
@Jitendrachouhan19992 жыл бұрын
Sir if you are reading my comment .. In these questions have 1,2,5 you forget but our answer is Accurate. Thanks for making that kind of video 👍
@animelover52712 жыл бұрын
yes bro 1,2,5 is also triplet
@hemrajbudhathoki9436 Жыл бұрын
@@animelover5271 it is triplet. However, 1, 2 is rejected in step 2. so the set which contains 1, 2 is rejected.
@divyamarora3071 Жыл бұрын
@@hemrajbudhathoki9436 then what about {1,2,3}?
@samyakjain3239 Жыл бұрын
@@divyamarora3071 Its {1,3,2}
@Hackve-l7z7 ай бұрын
Bhai abb kyy krta hai tu placement mili kyy
@Gfghbf6 жыл бұрын
sir u are supremely talented i always watch ur videos they are so useful !!!
@dude-ox2em5 жыл бұрын
Ivideyum Malayali💪🏻
@VoyagerVlogs5 жыл бұрын
Aaj ka video bada kamal ka hua !!!! Thanks
@09khushalbheke422 жыл бұрын
Sir this videos are very useful for us because our college teachers don't teach like you, I request you please keep doing videos for us
@ShivaniOnYT5 жыл бұрын
6:06 1,2,5 ka bhi 1 hai support
@sajidrsheikh5 жыл бұрын
He must have forgotten about it. 1,2,5 support is 25%
@ankitmukherjee70365 жыл бұрын
But (1,2,5) ka second step me elimination hota hai hai jab (1,2) and (1,5) k probabilities 1/4 rehta
@anujmore75474 жыл бұрын
@@ankitmukherjee7036 Yes u r right
@rahulchaubey89884 жыл бұрын
yes correct
@Kashmixx3 жыл бұрын
Exactly❤️
@cybershrajal2 жыл бұрын
sir kal exam hai ML ka apriori rat ke ja raha hu aapke chanal se .bhagwan kare aa jaye bas 🙂🙏🤍
@abhyudaypratap3665 жыл бұрын
Are sir ji maja aa gaya keep it up I like the way u are teaching Salute h sir aapko
@neatelf99135 жыл бұрын
When you get a girlfriend for the first time 4:19
@jhamukesh9985 жыл бұрын
double penetration on 5:38
@faizanullahkhan12825 жыл бұрын
@@jhamukesh998 I'm crying here 😂😂😂
@user-rr2hz3ti6l7 ай бұрын
🤣🤣🤣😅
@emrem7942 жыл бұрын
Dude u should do an English Version. Even I don' t know Hindi, I understood the basics of this concept. Thank you
@sunrise7964 Жыл бұрын
Such a fabulous faculty I have never seen in my life
@rucha5202 жыл бұрын
Good video👍🏻 Also Acc. To anti monotonicity if item set violates contraints so will its superset. So only {2,3,5} should be considered for last table.
@noneofurbusiness5657 ай бұрын
so anyone who does not understand this comment : she means to say that for {1,2,3} there is 3 subset {1,2} , {1,3} and {2,3} within which {1,2} does not have min support >=50%(check previous step) so the super set {1,2,3} is invalid same is for{1,2,5} and for {1,3,5} in which {1,5} does not have min support >= 50% . there was a lot of confusion in comment section so i hope this helps
@Abhishek-kr8ci6 ай бұрын
@@noneofurbusiness565 yes it does thanks
@Pranav-vn8bp5 жыл бұрын
Bhai mera ek suggestion hai ki tu agar "english ke subtitles dalega to tere views aur subscribers dono badhenge"... I know it'll be a time consuming task but Mark my words this will really help "you grow in life" n international viewers will love it. I'm from India and as an Indian I feel you'll make us proud by doing this.
@samriddhisingh16493 ай бұрын
Thankyou sirrr❤ 2 phone se subscribe bhi krdiye 😩❤️
@shreechatane92152 жыл бұрын
So well explained I can write a cpp code for this algorithm 🔥
@montusgamer12346 ай бұрын
thank u sir kal mera exam tha aur apki video dekh kar samaj agya. Btw is there any chance agar ap online classes de sako?
@siddugoud12944 жыл бұрын
I like your smile in the beginning...
@funnysid81802 жыл бұрын
Tum to dhamaka krdiye bhai ❤️❤️❤️
@fahimchowdhury67422 күн бұрын
YOU SAVED ME BROTHER 💚
@rajendramankar82266 жыл бұрын
छान!!👌👌👌👌
@vanisrikumar87412 жыл бұрын
U saved 10 mins of my tum TQ❤️🔥
@tejasamaresh99002 жыл бұрын
SIr, I am not able to find your video on Association rules which includes the topics dedicatedly on Support confidence and Lift ratio. Could you pls attach the link.
@gourav11632 жыл бұрын
Saari video chaant maari kisi ne bhi confidence and support nhi btaya ki ye actually me hota kya hai😑
@paper-toon101211 ай бұрын
Chhod de Bhai.....
@GangaramSahu-xj6hd10 ай бұрын
Yeah that's true bro Koi explain nahi karta theekse,.. I'm trying here maybe you get this.. 1. Support: Simply the percentage of occurrence.. (occurence of single item or 2 items together etc) in given dataset.. 2. Confidence: it is conditional probability, like given a what is the probability of b.. Let's see one example, if we have a database of people buying shoes 👟 and socks 🧦, so total number of times they both purchased together divided by total number of transactions is SUPPORT, and If I buy shoes then I want to know like how many people buy socks after buying shoes then that's CONFIDENCE, SUPPORT = 👟+🧦 / no. transactions CONFIDENCE = 👟+🧦 / 👟
@kripadhrangdhariya91949 ай бұрын
Support: Think of it as popularity: It tells you how often two items are purchased together. Example: Let's say out of 100 customers, 30 buy both lemonade and cookies. So, the support for "lemonade with cookies" is 30%. Confidence: Think of it as reliability: It tells you how likely someone who buys one item (let's say lemonade) will also buy the other item (cookies). Example: Out of those 30 who bought lemonade, 25 also bought cookies. So, the confidence for the rule "if someone buys lemonade, they also buy cookies" is 25/30 (around 83%). Finding Rules: Gather data: Track customer purchases (lemonade, cookies, etc.). Calculate support: See how often combinations appear (e.g., lemonade & cookies). Calculate confidence: For each combination, see how often the second item is bought with the first (e.g., how many who bought lemonade also bought cookies). Set thresholds: You decide what level of support and confidence is interesting. For example, you might only consider rules with support above 20% and confidence above 70%. Example Rule: Rule: "If someone buys lemonade (antecedent), then they are also likely to buy cookies (consequent)." Support: 30% (30 out of 100 customers). Confidence: 83% (25 out of 30 lemonade buyers also bought cookies). This suggests that since many people buying lemonade also buy cookies, having cookies available might increase your sales. Remember: High support means the combination is popular, but it doesn't guarantee one causes the other (people might just like both). High confidence strengthens the connection between the items. One of the most common algorithms used for finding frequent itemsets is called Apriori. Here's a breakdown of how it works in simple terms: Imagine you have a basket full of groceries: Each item in the basket represents an item in your data (e.g., milk, bread, eggs). You want to find out which combinations of groceries appear together frequently. Apriori works like this: Start small: It begins by looking at individual items and counting how often each appears in your data (like counting how many times you see milk, bread, and eggs). Find frequent single items: Based on a minimum support threshold (like a minimum number of times an item needs to appear to be considered frequent), it removes any item that doesn't show up often enough. Level up: Now, Apriori focuses on pairs of items. It combines the frequent single items from step 2 to see which pairs appear together often. Again, it eliminates any pairs that don't meet the minimum support. Iterate: This process continues. Apriori takes the frequent pairs and combines them to form triplets (like milk, bread, and eggs), checks their frequency, and removes any that don't meet the threshold. This keeps going as long as it can find frequent itemsets at each level. Key points about Apriori: Candidate generation: At each level, Apriori creates a list of potential frequent itemsets (candidates) based on the frequent itemsets from the previous level. This is why it's called a candidate generation approach. Iterative and level-wise: It works its way up one level at a time, finding frequent itemsets of increasing size in each iteration. Pruning: To avoid checking unnecessary combinations, Apriori uses a clever trick. It knows that if a smaller subset of items (like milk and bread) isn't frequent, then any larger set containing those items (like milk, bread, and eggs) cannot be frequent either. This helps reduce the number of candidates to evaluate. Think of it like building a pyramid: You start with the single items as the base (frequent single items). Only frequent pairs can be placed on top, forming the next level. As you go up, only combinations based on already frequent items are considered, ensuring all levels are built from frequent building blocks. Apriori is an efficient algorithm for finding frequent itemsets, but it can be computationally expensive for very large datasets due to the repeated candidate generation and support counting. There are other algorithms like FP-Growth that address this issue.
@gourav11639 ай бұрын
haha thanks but I think it's a little too late for me😅....well it will help others.@@kripadhrangdhariya9194
@semdantani18 ай бұрын
Support bhai wo hota hai jis se combination ki popularity bata ta hai mtlb konsa combination sbke jyada frequently use hota hai or confidence hame bata ta hai ki koi particular a ko lege to b ko lene kitan jaruri hai jese ki milk ke sth bread
@Sheetalmanohar4 жыл бұрын
Really good explanation. Great job
@anshulthakur38066 жыл бұрын
Awesome Tutorial
@milansanadhya97084 жыл бұрын
Very nicely explained
@SelieJaramillo-v2w13 күн бұрын
The video is very interesting! Something I don't understand: I have USDT in my OKX wallet and I have the recovery phrase. -----------: How should I convert them into Bitcoin?
@shru12446 ай бұрын
Apriori algorithm is used to find Association between the two objects. End goal / objective of apriori algorithm is to get the association rule between the two objects.
@akshayhandgar94926 жыл бұрын
Congrats for 10k views. Hope adsens are add on next time🔥🔥👏
@akshatsharma5774 Жыл бұрын
Sir isme 3rd step me {1, 2, 5} ka pair nhi bnega?
@Bollywood_beatz7 ай бұрын
Correct i was also thinking the same
@RishabhJain-ny1ze6 ай бұрын
Nhi Jo pair hmnare pas second m aaye h surf unse hi bnate h
@nuctanKatira3 ай бұрын
@@RishabhJain-ny1ze hey brother! i want to know ,, how to make pair in this step mean ..., from (1,3)(2,3)(2,5 )(3,5) this set ... how to make ?
@RishabhJain-ny1ze3 ай бұрын
@@nuctanKatira bro just take those pairs where something is common and write those pairs and write the common element once
@mrinalsharma184 жыл бұрын
rather than finding support percentage of each dataset you could have change the minimum support percentage to numeric ,it could be way more easy to solve and to understand.
@AB-we2vm3 жыл бұрын
7:00 sir what about 2,1,5 ? Plz ans
@anubhibudakoti62473 жыл бұрын
{2,1,5} is ignored, as he already told....bcz it was having the support of 25%
@leovaldez94983 жыл бұрын
@@anubhibudakoti6247 but so does {1,3,5} and {1,2,3}. he shouldve mentioned it
@abhijeethirekhan51755 жыл бұрын
Aaj ka ye video kamal ka hai
@godofwar82629 ай бұрын
Items set ❌ Atom set ✅
@sudhanshuranshevare Жыл бұрын
Thank you so much sir❤❤
@RanjitSingh-rq1qx2 жыл бұрын
Sir your content is mind-blowing but less subscriber . I don't like it. But sir u don't very sir, i will promote your content with my friends 🥰🥰❤️
@dharmendra.pandit Жыл бұрын
Hello and welcome, dosto, to Five Minute Engineering. Aaj ka video vakemein hi kamal ka hone vala hai.
@sadaffatima8535 жыл бұрын
Thank you so much . great explaination
@digvijay_karandeАй бұрын
Kadddak 🤜🤛
@BritBlissAdventures2 жыл бұрын
Very nic super explanation
@deepakalinavlogs3 жыл бұрын
Good wishes. Loved it.
@m00ndr0p5 жыл бұрын
Thank you. Great tutorial !
@pragyajais46454 жыл бұрын
Thank you Sir... You are too good , this video is very helpful for me
@mathematicians59252 жыл бұрын
Very nice Explanation Sir 😊👍👍
@humayunnasir62615 жыл бұрын
good explanation bro . Love from Pakistan
@tulsikhatri86945 жыл бұрын
Great Great Great explanation...
@dhairyamorbiya4672 жыл бұрын
clear and precise🙌🙌
@vikatagamingyt3251 Жыл бұрын
Awesome video sir🥰
@jashanbhayana8089 Жыл бұрын
there should be {1,2,5} also in the last table
@vijayjangir35563 жыл бұрын
The itemset III that you've generated, shouldn't include {1,3,5} and {1,2,3}. the only valid candidate after candidate pruning as per F(k-1) would be 1 itemset. that is {2,3,5} This is as per the anti-monotonic property of support. and the foundation fo apriori as opposed to bruteforce.
@cricketvidz68083 жыл бұрын
Agreed
@mrsmile13872 жыл бұрын
heyy could you pls tell the details of the above theory pls
@sultanurrahmanshuvo Жыл бұрын
very helpful video sir
@umar-tariq9 ай бұрын
Item ❌ Atom ✅
@sanketpawar94177 ай бұрын
@chandankhuntia7017 Жыл бұрын
beautifully explained
@tapanjeetroy82665 жыл бұрын
Thanks a lotbsir.. You have done a great job
@anmol_283 жыл бұрын
Triplet should also include {1,2,5}
@priyankitanwar34913 жыл бұрын
because {1,2} and {1,5} are discarded so there's no common ground to group them
@techeasy6022 жыл бұрын
{1,2,5} occurs only one time which gives 25% support that's why it is discarded
@hardiksingh8119 Жыл бұрын
Gyaan mat pel zyada bhadwe
@Akuma7499 Жыл бұрын
Yes
@charugera76544 жыл бұрын
Excellent explanation
@stephyjohn45174 жыл бұрын
Sir, I kindly request you to share video on graph mining( apriori based approach for mining frequent subgraphs).Your videos are helpful and easy to understand.Hope to see more videos from you.
@switugohil035 жыл бұрын
Super work...go ahead
@satyajitdas31209 ай бұрын
Sir minimum support and threshold confidence agar qsn main na deya ho tohh ??? Kya pakar na hai ?🙄
@harshpandey82453 жыл бұрын
Hi, in the 3rd step of triplets, couldn't we add (1,2,5) too- wo bhi to ek triplet hai? that also has a support of at least 1, i.e. (1,2,5)=1/4=25% Please confirm!
@priyankitanwar34913 жыл бұрын
because {1,2} and {1,5} are discarded so there's no common ground to group them
@adarshtapariya4275 Жыл бұрын
@@priyankitanwar3491 but (2,5) is there
@vikramadityasingh49793 жыл бұрын
Sir why didn't you include (1,2,5) in triplet formation? That triplet is present in TID 300.
@priyankitanwar34913 жыл бұрын
because {1,2} and {1,5} are discarded so there's no common ground to group them
@abhimanyouknow3 жыл бұрын
@@priyankitanwar3491 then how did we get {1,2,3}?
@sougatasen36913 жыл бұрын
Yes he should have included {1,2,5} But it would have been left out eventually cause it's support would have been 1/4=25%
@Lionelmessi-zp9vt2 жыл бұрын
@@sougatasen3691 yeah this might be the reason
@rdxgaurav34832 жыл бұрын
@@abhimanyouknow cause {1,3} is still in the pair set
@amarsharma4664 жыл бұрын
Nice, easily explained
@DipanGhosh_Dipdu4 жыл бұрын
Great explanation
@yamzaidi5 жыл бұрын
5:50 we can have (2,3,5) is also a possible triplet then why you didn't include it in III matrix ????
@piyushapawar46405 жыл бұрын
(1,2,5)*
@mukeshjha42805 жыл бұрын
Hit like if this guy saved you today.
@jaykothari68185 жыл бұрын
Awesome explanation....
@machinelearning68465 жыл бұрын
Please make brief about gradient descent algorithms.
@shreyashachoudhary4802 жыл бұрын
Superb!
@tulsikhatri86945 жыл бұрын
Engineering exams, exams time pe pad ke nikal rahe hai tumhare videos se...
@anikacharjee39325 жыл бұрын
Wow!!!!!! Just Amazing
@MalikQasim-ri4oq2 жыл бұрын
Really appreciate
@kamaljeetkaur86534 жыл бұрын
Thnk uuu sirrrr😊😊😊😊😊😊😊😊😊😊😊😊😊😊
@MdRashid-zx6cn4 жыл бұрын
Thank you sir for video
@bisheshtalukdar21635 жыл бұрын
what if in 3rd itteration all item set cant meet min support
@ankitsuman82053 жыл бұрын
Thank you ❤️
@moeenkhan10666 жыл бұрын
Thanks for this video 😊
@renewed_radiance Жыл бұрын
sir how to determine min. the threshold? can we choose any value we want ? Or is it pre defined ??
@chainsawman-ilia Жыл бұрын
given
@yashraj57666 жыл бұрын
sir please upload video on closed frequent itemsets and maximal frequent itemsets....
@anilkumarpasvan94625 жыл бұрын
Min sup. Count 50% ko 100÷50=2 bhi le sakte hai n? So that we have no need to find %,again and again.
@AbhayTewari-lc3hc2 жыл бұрын
Sir, in the last table {1,2,5} should also be included
@teenandrogamer2937 Жыл бұрын
Pukk ga
@akashbhosale63534 жыл бұрын
Thank You Sir
@25kirtan3 жыл бұрын
thanks bro!
@manshalkhatri9289 Жыл бұрын
Helpful
@divyanshsao3846 Жыл бұрын
What if we have more than 3 elements after the triplet formation , lets say if we have 4 items remaining then what should we do ?
@siddheshnikam5741 Жыл бұрын
Does order matters in forming pair?
@sushil42116 жыл бұрын
sir.. mining various kinds of association rules explain Karroo Na.
@nikitasinha81814 жыл бұрын
Thank u so much
@vidyashreerayar7417 Жыл бұрын
could 1,2,5 also be a combination? although it would ge eliminated as support doesn't meet threshold.
@roshantimilsina7354 Жыл бұрын
yes surely one combination of triplet 1,2,5 is missing
@sumantrinidas2031 Жыл бұрын
probably because {1,2} and {1,5} were eliminated in the second step.
@prashantjannu2652 Жыл бұрын
Sir your knowledge and teaching is good but it's very irritating voice, Plzz use mic sir
@lordkrishna74802 жыл бұрын
Can u please further videos explain in English
@anmolagrawal44014 жыл бұрын
What was the role of threshold confidence?
@shalabhbhatiya22924 жыл бұрын
sir why you are not taken {1,2,5}
@himanshunikam62515 жыл бұрын
Isma or association rule ma kya diffrance ha?
@bhavishamoghe20363 жыл бұрын
while doing the triplet one why didnt you took {1,2,5} item set???
@priyankitanwar34913 жыл бұрын
because {1,2} and {1,5} are discarded so there's no common ground to group them
@bhavishyaarya65203 жыл бұрын
I also have the same dought
@badal84353 жыл бұрын
Thanq sir
@gauravyeskar18097 ай бұрын
Sir firse ek vdo banao jisme clear clear smj mein aaye. Iss me kuch palle nahi pdraha
@akshayjadhav2166 жыл бұрын
Sir plz Data analytics ke remaining videos dalao naa sir...plz....C4.5, CART, evaluating decision tree, Smoothing, Diagnostics, classification of diagnostic, sir plz hosake to last 3 unit Book mein ke syllabus topic explain kro naa sir bahoot hard language hai sir plz