loved the explanation. Watched explanation video from neetcode and didnt understand much , this one was so simple and intiutive
@Sakshi-yq4jm8 ай бұрын
this was literally the best explanation, i have been trying to understand the reason behind this approach for quite some time now, been surfing youtube all day today. and finally. good work. thank you!
@ARYANMITTAL8 ай бұрын
Glad it was helpful Sakshi 🙇🫡🫂
@aayushyavajpayee49896 ай бұрын
from 8:16 to 8:48, you can avoid that and video will become shorter and crisp. You are doing great
@alifrahman70999 ай бұрын
thanks
@ganeshsharma58109 ай бұрын
amazing approach bhaiya
@sameershah14929 ай бұрын
Amazing approach ❤
@akhilkarumanchi4589 ай бұрын
Can you make a video of your day time table ?
@kushal82619 ай бұрын
Yes please!
@Sahilsharma-sk5vr9 ай бұрын
yes please
@abhinavdubey_79 ай бұрын
Thankyou my brother amazing.
@shalinijha73599 ай бұрын
just thankyou for existinggg
@HarshSharma-hi9vc9 ай бұрын
nice explanation
@codedecode86869 ай бұрын
nice approach
@learningmaths7869 ай бұрын
Thanks Aryan ❤
@CodeMode93139 ай бұрын
badia
@ritishrai5819 ай бұрын
Oh f . I did this using the BIT MANIP trick you taught in one of your previous videos . I guess the tc would still be equal to the no of bits right? #define ll long long class Solution { public: void calcBitRange(vector&bits, int num) { if (num==0) { return ; } if (num==1) { bits[0]++ ; return; } else if (num==2) { bits[0]++; bits[1]++ ; return ; } ll bitLen = log2(num); ll nearPowerOf2 = 1ll =0 ;i --) { bits[i]+= nearPowerOf2 >> 1ll ; } calcBitRange(bits,num-nearPowerOf2); return ; } int rangeBitwiseAnd(int left, int right) { vectorrange1(65,0) ; vectorrange2(65,0) ; if (left==0) return 0 ; if (left>1) calcBitRange(range1,left-1); calcBitRange(range2,right); ll ans = 0 ; for (int i =0 ; i
@whoshyam4 ай бұрын
please provide your onenote page link
@parthbhatti41519 ай бұрын
why chatgpt says O(log(right)) time complextiy ?
@sahilkarwani96299 ай бұрын
if u take the maximum value of right according to question then it will be 2^32 then O(log(2^32)) gives you O(32) which is O(1).
@RachitKumar-yp2ub9 ай бұрын
worst case time complexity is O(32). cause at max we might end up taking 32 traversals.