It's come to the point where I've stopped looking at lecture slides and exclusively come here to learn.
@boubougeorge17774 жыл бұрын
That is so right 😂
@umiddey87144 жыл бұрын
It's 2020 and I do the same.
@thhbere3 жыл бұрын
2021, same
@donghoshin34602 жыл бұрын
2022, same
@Flush333 Жыл бұрын
2023, same
@yaweli2968 Жыл бұрын
It’s a crime you are teaching for free and my professor is getting paid when he can’t teach. Thanks for what you do. Much appreciated.
@samkim69335 жыл бұрын
You are a genius~!! made me intuitively understand the material when no other books or lecturers couldn't...
@attesaarinen43118 жыл бұрын
Ben you da MVP
@_kim72714 жыл бұрын
유가쇼크 후 가격이 원상복귀하는 과정이라니... 설명 미쳤다... 이게 ㄹㅇ 계량경제학이지...
@Eizengoldt11 ай бұрын
Hi cutie
@lizrael2 жыл бұрын
Thank you so much! You have helped me understand more than any of my profs ever had.
@wanjadouglas30583 жыл бұрын
Very nice example Lambert
@mehmethikmet34396 жыл бұрын
Ben you are a fucking legend mate.
@changlinlei76002 жыл бұрын
Thank you sir for the clear explanation
@Garet439 жыл бұрын
This is an excellent explanation of the AR1 effect! Thank you!!
@Highlyk8 жыл бұрын
Great vids Ben. Incredibly useful.
@Alex-uo1ef6 жыл бұрын
Great video! Helped me a lot for understanding the AR Model in the context of signal processing !
@amengioio10 жыл бұрын
Thanks for making this informative video. Should the formula of the oil price example just be, "Oilp[t] = .5*Oilp[t-1] + eps[t]" instead of "delta(Oilp[t]) = .5*delta(Oilp[t-1]) + eps[t]"? Because if I expand the formula, it seems to be a AR(2) process.
@tusharbharati51519 жыл бұрын
+Ryan Zhang I agree. +Ben Lambert: Please take a look
@tommarty2349 жыл бұрын
+Ryan Zhang keep in mind that delta(Oilp[t]) is the random variable being considered, not Oilp[t] - so the AR(1) model's recursive order to Oilp[t], or any other variable, is not relevant in this context. Also I think he has defined delta(Oilp[t]) as the delta from some constant, as opposed to delta between the last two values, otherwise his plot would oscillate. I realise this question is from over a year ago, Im just replying in case anyone else has the same question.
@pedromrfernandes5 жыл бұрын
i guess with the formula in deltas the example is correct. however, with the formula in levels, the price would have to climb by an extra $5 in t+1, reaching +15$ from the period before the shock, then reaching a peak right after the change vanish. can anyone confirm?
@namukayasandra56337 жыл бұрын
Thank you.I have been having trouble understanding y applied econometrics module
@ΓιωργοςΓαλάρης-ψ3β6 жыл бұрын
Thanks a lot for these videos! Very helpfull!!
@ecerulm8 жыл бұрын
This video seems to be part of series, I would be nice to include a link to the series/playlist (if there is one) in the description or better yet as overlay annotation in the video itself.
@iamdumbmatt7 жыл бұрын
very intuitive explanation sir
@patrickgold36164 жыл бұрын
why is the oil price suddenly called x and not y? In previous videos, the dependent variable was always y. X here makes it seem like we are discussing an independent variable?
@Kavafy22 күн бұрын
It's both
@aristalyakusuma18 жыл бұрын
Thank you for the video. It really helps me!
@zarulkhaliff51076 жыл бұрын
Ben, can I use cross-section data for forecasting using AR(1)? Thanks
@urabi3tube8 жыл бұрын
I have a question why do use AR or MA or ARMA model in other words why we abandon multiple regression, to be more clear I want to know why we decide to take the variable's lag as an explanatory variable?????and when also can I decide which model to build by looking to variables? please can u help me we this issue? thanks :)
@ignaciosacristanlopez-brav6842 жыл бұрын
Wxcellent video like always
@gulzameenbaloch93392 жыл бұрын
Thank you so much
@yinyuebu10 жыл бұрын
Love this!
@SpartacanUsuals10 жыл бұрын
Hi, many thanks for your message! Best of luck with your studies. Thanks, Ben
@shairozsohail105910 жыл бұрын
Great job!
@andrewseeran881110 жыл бұрын
Is this a continuous "version" of a markov process?
@anishsharma30716 жыл бұрын
Hello Ben, These videos are proving themselves very helpful. Thanks for the same. I had few questions 1. i have read this definition somewhere - "a moving average process is a linear regression of the current values of a time series against both the current and previous unobserved white noise error terms, which are random shocks". what do we mean byy saying an error term as unobserved?. 2. how we can exactly quantify unobserved white noise error term in our MA/ AR model.(have we regressed the time series and then have compared actual and modeled) ? Please clarify, i will be thankful.