Axiom of Choice, 13 Essence of Set Theory

  Рет қаралды 6,105

Mirek Olšák

Mirek Olšák

Күн бұрын

Пікірлер: 13
@wilderuhl3450
@wilderuhl3450 2 жыл бұрын
Underrated channel. Thanks for the great videos.
@feelmehish8506
@feelmehish8506 Жыл бұрын
These videos are super well made
@hugoballroom5510
@hugoballroom5510 Жыл бұрын
Thank you for this series. I have been looking for a video that explicates the motivation this Axiom. Yours is the only one i can find. The animation and narration are so clear and concise. So glad to have found your channel. I also follow 3b1b and agree with you that style is a great model for such videos.
@StratosFair
@StratosFair Жыл бұрын
Thank you for these videos, I learn a lot and it's a lot of fun with your wonderful animations
@lior_shiboli
@lior_shiboli 2 жыл бұрын
This deserves so many more views It's really interesting
@whyre69
@whyre69 Ай бұрын
true
@dsagman
@dsagman Жыл бұрын
this video should have many thousands more views
@AntonParamonov-e2d
@AntonParamonov-e2d 3 жыл бұрын
Thank you for the wonderful playlist! By the way, the problem about hats and prisoners can be solved more “optimally”, namely with only one prisoner having a chance to guess his hat wrong. The strategy is the first prisoner encoding the parity of a distance from a sequence he is seeing to the class representative (that is correct since the distance is finite). Knowing this information the second prisoner can guess his hat for sure, knowing the parity and the second prisoners guess the third prisoner can guess his color and so on.
@procdalsinazev
@procdalsinazev 3 жыл бұрын
True, but that is a different hat problem. In the hat problem in the video, the prisoners have no information from the others.
@GiovannaIwishyou
@GiovannaIwishyou 3 жыл бұрын
Thank you! Your channel is a real gem.
@y0n1n1x
@y0n1n1x 3 жыл бұрын
THANK YOU SO MUCH
@jakeaustria5445
@jakeaustria5445 6 ай бұрын
Thanks
@ostihpem
@ostihpem 5 ай бұрын
Too complicated. Here is an easy example. We have a set x with non-empty sets, disjunctive to each other, but we do not know anything about the elements of these sets of x. So we cannot use the axiom of separation or replacement or whatnot because we couldn‘t even formulate the rules to apply. But AC guarantees us a set with exactly one element of the sets of x as its elements.
Formal Recursion, 14 Essence of Set Theory
11:36
Mirek Olšák
Рет қаралды 1,8 М.
Axioms, 9 Essence of Set Theory
15:34
Mirek Olšák
Рет қаралды 3,4 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
you can only use a ruler!
7:56
Wrath of Math
Рет қаралды 2,1 М.
How the Axiom of Choice Gives Sizeless Sets | Infinite Series
13:20
PBS Infinite Series
Рет қаралды 318 М.
Death by infinity puzzles and the Axiom of Choice
12:30
Mathologer
Рет қаралды 236 М.
Zermelo Fraenkel Choice
20:31
Richard E Borcherds
Рет қаралды 14 М.
The Axiom of Choice
32:47
jHan
Рет қаралды 105 М.
Absolute Infinity - Numberphile
19:05
Numberphile
Рет қаралды 474 М.
What's so wrong with the Axiom of Choice ?
4:50
MetaMaths
Рет қаралды 110 М.
The Concept So Much of Modern Math is Built On | Compactness
20:47
Morphocular
Рет қаралды 454 М.
Russell's Paradox - a simple explanation of a profound problem
28:28
Jeffrey Kaplan
Рет қаралды 8 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН