The full Neural Networks playlist, from the basics to deep learning, is here: kzbin.info/www/bejne/eaKyl5xqZrGZetk Support StatQuest by buying my book The StatQuest Illustrated Guide to Machine Learning or a Study Guide or Merch!!! statquest.org/statquest-store/
@sahanamd7072 жыл бұрын
In neural network, does the gradient for parameters are calculated parallel? For example: when I start with finding gradient for all the 7 parameters, do I calculate all 7 parameters simultaneously by taking the previous iteration values or, first I calculate the bias gradient and get the new bias, then calculate predicted value by new bias and then calculate gradient for w3 ? And so on till w1 ?
@statquest2 жыл бұрын
@@sahanamd707 Everything is done at the same time.
@sahanamd7072 жыл бұрын
Thank you
@chaitanyasharma62703 жыл бұрын
the way you explain things,so patiently and in depth, i feel 200% more confident in the topic afterwards
@statquest3 жыл бұрын
Awesome! :)
@joserobertopacheco298 Жыл бұрын
I'm writing from Brazil. This channel's playlist about neural networks is a masterpiece.
@statquest Жыл бұрын
Muito obrigado! :)
@KzrLancelot6 ай бұрын
join a cartel
@shafir360 Жыл бұрын
I am watching all of these eventhough i already graduated with masters with focus on machine learning and deep learning. its actually amazing how much I am learning even as a intermediate student.
@statquest Жыл бұрын
bam!
@arindammitra22933 жыл бұрын
Triple BAM (Explanation)+Triple BAM (Animations)...... You are a very great teacher Josh Starmer :) :)
@statquest3 жыл бұрын
Wow, thanks!
@victorreloadedCHANEL Жыл бұрын
We all should buy his book, he deserves it given the quality of these videos!!
@statquest Жыл бұрын
Thank you!!! :)
@peki_ooooooo Жыл бұрын
yes!
@MultiSamarjit9 ай бұрын
@@statquest Hey man, just bought your book,will be arriving in a few days via amazon.All these topics are covered right?
@statquest9 ай бұрын
@@MultiSamarjit The basics of neural networks and backpropagation are covered. The other topics are listed here: statquest.org/statquest-store/
@TheAkiller1013 жыл бұрын
I really like the medieval guitar sound you added when you said "fancy notation" , you effort can really be seen in the little details
@statquest3 жыл бұрын
Thanks!
@voyam6 ай бұрын
Had to watch 17:09 at least ten times. But now I get the most dificult part: the orange and blue curves, represent... the orange and blue curves. Without that, I would be completely lost 😆. Thanks for the hard work. Amazing series!
@statquest6 ай бұрын
I'm glad you figured it out! :)
@eren_denizАй бұрын
hahahaha
@KenJee_ds4 жыл бұрын
I wish I had this when I was first learning backpropagation! Can I "work my way backward" with this knowledge haha
@statquest4 жыл бұрын
BAM! :)
@romanrandall21063 жыл бұрын
Pro tip: you can watch movies on flixzone. Me and my gf have been using it for watching lots of of movies lately.
@amoszahir73463 жыл бұрын
@Roman Randall Definitely, have been using Flixzone for years myself :)
@rajeevradnair3 жыл бұрын
haha good one !!
@eduardbenedic98442 жыл бұрын
@Roman Randall and @Amos Zahir are bots but nice one
@erenplayzmc94529 ай бұрын
OMG THE HAPPINESS I WAS FEELING WHEN I UNDERSTOOD EVERYTHING, you seriously are a really good teacher.
@statquest9 ай бұрын
Thank you!
@vusalaalakbarova73782 жыл бұрын
Thanks Josh for these videos, I passed my data mining exam by watching your videos, now preparing for the ML exam. Your explanation is brilliant, I learn topics of 3 lectures with these 18 minutes videos. Please continue to publish such valuable content, you save lives of many people like me.
@statquest2 жыл бұрын
Thank you and good luck with your exam! Let me know how it goes.
@vusalaalakbarova73782 жыл бұрын
@@statquest Josh, are you planning to make a video about batch normalization?
@statquest2 жыл бұрын
@@vusalaalakbarova7378 Not soon. Currently I'm working on a series of videos about how to build neural networks with pytorch and pytorch_lightning.
@mattduchene667 ай бұрын
Despite the simple explanations, these videos continuously make me doubt my mathematical abilities for about 15 minutes. But without fail, there’ll be a DOUBLE BAM! out of left field and suddenly everything’s clear in my head. Thank you! You’re doing God’s work.
@statquest7 ай бұрын
Bam! :)
@maayanmagenheim4413 жыл бұрын
I'm a student for CS at the Hebrew University of Jerusalem, study right now IML course. Your lectures so help me and my friends, and I really want to thank you. You're a great & funny teacher and your lessons are a perfect example to how to teach at the 21 century. Tnx again
@statquest3 жыл бұрын
Wow! Thank you very much! BAM! :)
@averagecandy258111 ай бұрын
The details are just out of this world. Amazing. Breath-taking and short of words.
@statquest11 ай бұрын
Thanks!
@DharmendraKumar-DS Жыл бұрын
How the heck do you have this much understanding in each concept...you are irreplaceable.
@statquest Жыл бұрын
Thanks!
@magabosc24515 ай бұрын
BAM !!! I'm doing my PHD in this field, and it is the BEST serie of videos that I have watched since the bigenning of my study ! Thank you so much for that :D
@statquest5 ай бұрын
Thanks and good luck!
@rohanmishra31153 жыл бұрын
What a great explanation to such complex topic. I can't imagine the amount of effort you put in to create such detailed videos along with spoken text. One of the best youtube channel I have ever come across ! Hats off to you .. Don't BAM me :)
@statquest3 жыл бұрын
Wow, thank you!
@joserobertopacheco298 Жыл бұрын
I agree 100%
@nonalcoho4 жыл бұрын
BAMMMMMMM! I like the animation in the last part and the music with Fan~cy notation lol
@statquest4 жыл бұрын
BAM! :)
@georgeshibley95294 жыл бұрын
One of these days I'd love to see you do a NN to watch the process you produced on these videos get lined up with some code, maybe python or R. It's incredible work you do, hell you are helping me survive my masters program. If you put it up, I'd trust the content. Thank you for all your hard work
@statquest4 жыл бұрын
Thank you! And good luck with your masters degree.
@anshuljain22587 ай бұрын
Such hard work. Thank you Josh, you are helping generations with this + all your videos. Step by step learning with examples is the right way to learn anything !
@statquest7 ай бұрын
Thank you!
@ileshdhall2 ай бұрын
wow! WoW! WOW!, I have always been scared of math, cus it took me hell lot of time to understand, but you just explain it as smooth as butter, Thanks a lot really!!
@statquest2 ай бұрын
Thank you very much!
@blueeyessti3 ай бұрын
These videos are so much better than 3blue1brown, he starts with complicated analogies and examples and then delves into heavy math whereas this simplifies the problem using simpler examples and works through all the small steps
@statquest3 ай бұрын
Thank you!
@free_thinker4958Ай бұрын
I totally agree with you 👏
@wliw30343 жыл бұрын
You are One of the Best Content Creator I have ever Seen.
@statquest3 жыл бұрын
Wow, thanks!
@lisun71582 жыл бұрын
[Notes] 6:44 Notation for activation functions 2:50 Initialize weights using standard normal distribution. Q: Why N(0,1)? -- A: Just one of many ways to initialize weights. [ref. 9:50 of kzbin.info/www/bejne/fXy9oIJ-jayWgtE&ab_channel=StatQuestwithJoshStarmer] Initialize bias with 0 since bias terms frequently start from 0. 4:33 4:48 plot SSR with respect to b3
@statquest2 жыл бұрын
bam!
@tagoreji21432 жыл бұрын
A Brief Indepth Explanation.Thank you Sir
@statquest2 жыл бұрын
Glad you liked it
@ericchao30172 жыл бұрын
Really loving these videos, thank you so much for your work Josh
@statquest2 жыл бұрын
Thank you!
@Vanadium404 Жыл бұрын
This NN series is so underrated just 124K I mean come on
@statquest Жыл бұрын
Thanks!
@boxiangwang4 жыл бұрын
Mega BAMM!! I really love the explanation. Awesome!
@statquest4 жыл бұрын
Thanks!
@vladimirfokow6420 Жыл бұрын
Thank you for your clear explanations with the simple example! Great work, and very useful.
@statquest Жыл бұрын
Glad it was helpful!
@flyawayhome328 күн бұрын
The little harpsichord really tickled me haha, love it
@statquest27 күн бұрын
:)
@mortyk1826 ай бұрын
woah this was some amazing teaching skills sir, you're totally gifted with that
@statquest6 ай бұрын
Thanks! 😃
@Viezieg2 жыл бұрын
thank you so much for these videos. i hated math back in high school, but now in my mid 20's i would rather do math than play video games. all thanks to your tutorials
@statquest2 жыл бұрын
Wow! That's awesome! Thank you!
@石政泰5 ай бұрын
I am on vacation in Hawaii but I am watching your neural network video. This video is so entertaining to watch :) Tai
@statquest5 ай бұрын
BAM! Have a great vacation! :)
@石政泰5 ай бұрын
@@statquest thank you! you too. have a nice day
@mohammadhaji21913 жыл бұрын
That was the best explanation I had ever seen. Thank you very much.
@statquest3 жыл бұрын
Thank you! :)
@ayushipal760511 ай бұрын
Hats off to you Josh!! So nicely explained ❤
@statquest11 ай бұрын
Glad you liked it!
@Tapsthequant3 жыл бұрын
You make this stuff so accessible, well done!
@statquest3 жыл бұрын
Thank you!
@alinadi94278 ай бұрын
this playlist is excellent
@statquest8 ай бұрын
Thank you!
@KayYesYouTuber Жыл бұрын
This is simply beautiful!. You are the best.
@statquest Жыл бұрын
Thank you!
@girmazewdie8366 Жыл бұрын
Thank you so much for sharing your knowledge, it is really so increadibly helped me understand the basics of the NN.
@statquest Жыл бұрын
Glad it was helpful!
@amarnathmishra86973 жыл бұрын
Well you actually make complex things super easy.Hats off and of course BAAA...M!!!
@statquest3 жыл бұрын
Bam! :)
@mahfuzurrahmanabeed43492 ай бұрын
I wish I could have taken your classes when I was back in high school.
@statquest2 ай бұрын
bam! :)
@snp271823 жыл бұрын
You're a legend Doctor Starmer.
@statquest3 жыл бұрын
Thanks!
@starkarabil92603 жыл бұрын
that was exactly what I needed. It would be great if you could 'also' do an application through one of Python libraries in order to show a real application by scripting with using this knowledge.
@statquest3 жыл бұрын
Thanks! I would like to do that.
@willw4096 Жыл бұрын
Notes: 2:31 6:14 15:57 the "y"s are calculated based on other weights (w1 and w2)
@statquest Жыл бұрын
:)
@AnBru Жыл бұрын
amazing video, thanks for all your hard work on this.
@statquest Жыл бұрын
Glad you enjoyed it!
@anashaat952 жыл бұрын
Great explanation as usual. Thank you very much.
@statquest2 жыл бұрын
Thanks again!
@ilducedimas2 жыл бұрын
God bless this Good Man.
@statquest2 жыл бұрын
Thanks!
@puppergump41172 жыл бұрын
13:35 Do you mean the derivative of observed - predicted? Wouldn't that be a derivative of a single number? Or does it always just come out to be -1?
@statquest2 жыл бұрын
To get a better understanding of how we determine this derivative, check out the StatQuest on The Chain Rule: kzbin.info/www/bejne/rZ2Unqyup9mEfrM It will explain exactly where that -1 comes from.
@puppergump41172 жыл бұрын
@@statquest Oh the derivative of the negative intercept? ok thanks
@nidakhan1412 Жыл бұрын
thank you so much sir for clearly explaining everything
@statquest Жыл бұрын
Thanks!
@tinacole1450 Жыл бұрын
Hi Josh! Love the videos. Do you have any posts for building models in R/Rstudio on neural networks? Thanks,Tina
@statquest Жыл бұрын
Not yet!
@quantummusic23222 жыл бұрын
I love you Statquest
@statquest2 жыл бұрын
:)
@killer-whale8642 жыл бұрын
i hate stats, and i hate statquest. But i keep finding myself on this channel again and again
@statquest2 жыл бұрын
noted
@abhijeetmhatre97543 жыл бұрын
This is just awesome. I had started learning machine learning algorithm from multiple sources until I found your youtube channel. And now I don't have to check for any other source for understanding any ML algorithm. Looking Forward for more deep learning videos as my area of interest is deep learning. Could you help me with a good book for deep learning? And thanks for such wonderful videos.
@statquest3 жыл бұрын
This series ends (for now) with Convolutional Neural Networks, so just keep watching to learn about deep learning.
@robertdavis28552 жыл бұрын
I love you man! You have a sense of humor about you that is rare in deez parts lol
@statquest2 жыл бұрын
Thank you!
@danielo64132 жыл бұрын
Hi Josh, great video as always. One question, if I want to speak in epoch and batch terms for this video, is it correct to say that this video shows one epoch, which includes one batch that contains all 3 data points we have (Batch Gradient Descent process)? Thanks a lot !!!
@statquest2 жыл бұрын
Yes, that is correct.
@akaBryan2 жыл бұрын
Hey just a question! Around 14:00, why are you taking the derivative of SSR with respect to w_3 and w_4 rather than y_2,i and y,1_i? What is the logic between choosing taking the derivative with respect to the weight rather than the functions themselves?
@akaBryan2 жыл бұрын
Ah nevermind, its because you want to optimize the weights w_3 and w_4, so you just take their derivative to get step size and so forth... im so dumb haha! Im assuming that in the next part then you will optimize the weights w_1 and w_2 by also connecting them to the derivative of the loss function with respect to the weights, so itll be a huge bonkers chain rule in action
@statquest2 жыл бұрын
Yes! It will be totally bonkers with chain rule action. :)
@samuelpolontalo68824 жыл бұрын
Best channel ever
@statquest4 жыл бұрын
Wow! Thank you! :)
@Aaa-vh2lm4 ай бұрын
Absolutely amazing! I‘ve got a question though. How do we know if we are going the right direction when calculating the new parameter.
@statquest4 ай бұрын
The derivative tells us what direction to change the parameter. To see more details, see: kzbin.info/www/bejne/qXXZZZlqqJeGeJo
@Aaa-vh2lm4 ай бұрын
@@statquest Thank you for answering even after 2 years! Funnily enough, while I wrote the elaboration of my question here, I stumbled upon the answer myself. Thank you again for your commitment. Let me tell you, that the work you do absolutely outclasses any learning material that I have stumbled across. I will definitely check out your book! Great work!
@jameelabot91224 ай бұрын
Love your videos man, very helpful at providing detail without sacrificing clarity. However I have noticed quite a few errors across the videos, generally small errors such as saying the wrong numbers or when calling up examples such as in this video at 9:26. input_3 would be 0, not 1. Again, it is not a major error and the information provided is nonetheless exemplary however it does make following along a tad challenging when trying to listen to the video rather than watching it like a hawk. Keep up the good work man, much appreciated x
@statquest4 ай бұрын
I'm glad you like my videos. It is indeed unfortunate that a few of them have small "typos". However, the example you provide is not one of them. The inputs to the neural network are the x-axis coordinates, not the y-axis coordinates. The 3rd data point has an x-axis coordinate of 1 and a y-axis coordinate of 0. Thus, for the 3rd data point, the input to the neural network is 1 and the desired output is 0. So, not only is this not a major error, it's not an error at all.
@soraf5834 жыл бұрын
Thanks for your great video as always! I have a question though after watching this video and the other SGD video you've made in the past. When calculating the gradients for each parameter with regular gradient descent, we are plugging in all of the samples into the derivative of the loss function w.r.t the current parameter; versus we will just randomly pick one sample in the same process with SGD being used. If that's the case, then what will be the purpose of looping through all the samples (with regular GD) in a complete epoch if we are already using all the samples when calculating the gradients? Thanks in advance!
@statquest4 жыл бұрын
I'm not sure I fully understand your question. The difference between "regular" and "stochastic" gradient descent in this context has to do with the summation. In "regular", the summation goes from 1 to 'n', where 'n' is the number of samples. In "stochastic", the summation goes from 1 to m, were 'm' is < 'n' and is the number of samples randomly selected for the iteration. Does that help?
@soraf5834 жыл бұрын
@@statquest Thank you for the quick reply! Yes that’s helpful and I think I’m understanding that part. I was mixing the concept of Gradient Descent with epoch/batch numbers, but I guess whether the GD is stochastic or not has nothing to do with the general epoch/batching concept when running a neural network, as we would still need to go over all the samples in a full epoch.
@edphi2 жыл бұрын
Thanks. Great video again and again.
@statquest2 жыл бұрын
Thank you very much! :)
@白云开3 жыл бұрын
BAM! Great work!
@statquest3 жыл бұрын
Thank you!
@mikhailbaalberith4 жыл бұрын
Hey Josh, this is dope. Hope you could do some videos about the Hessian and Jacobian matrices, Thanks.
@statquest4 жыл бұрын
I'll keep those topics in mind.
@gero80493 жыл бұрын
Im gonna make a AI agent that create youtube bots that promotes your channel. You really deserve all kudos.
@statquest3 жыл бұрын
Bam!
@madghostek3026 Жыл бұрын
Small question: since we fiddle with all (or part) of the parameters at once, and for example bias is dependent on weights on the graph, does that mean they fight with each other? Can something be done about it? Like we calculate the derivatives for current forward pass, ok, but then changing all parameters at once to what the think is optimal might throw off everything, since they can't communicate in any way, how does it not explode?
@statquest Жыл бұрын
In my video on gradient descent, I show how to optimize two parameters at the same here: kzbin.info/www/bejne/qXXZZZlqqJeGeJo In that video, we're trying to fit a straight line to some data points and are using gradient descent to find the best values for two parameters, the y-axis intercept and the slope. If you watch, you'll see a fancy graph, where one axis represents different values for the y-axis intercept and another axis represents different values for the slope. When we optimize both at the same time, we take a step towards a better intercept on that axis and take a step towards a better slope on that axis, which is different, and doesn't affect the one the intercept is on. So the parameters don't fight each other because each one gets its own axis to work on. That being said, we can still get stuck in a local minimum, but it's like progress in one parameter can be negated by progress in another.
@madghostek3026 Жыл бұрын
@@statquest Ah, this makes a lot of sense now, I think I know why it was misleading for me - in the end all you see a numerical value, the error, but behind the scenes the partial derivatives take apart the loss function in their own domains, so it's not just one number. Thank you for very descriptive response!
@statquest Жыл бұрын
@@madghostek3026 bam! Your question is actually a very good one and maybe one day I'll make a short video that explains it for everyone.
@rafibasha18403 жыл бұрын
@4:45 ,Hi Josh why sum of squares residual used classification problem
@statquest3 жыл бұрын
Because it works just fine in this simple example. However, if you keep watching the series, you'll see how to do backpropagation with ArgMax and SoftMax and Cross Entropy. Here's the whole playlist: kzbin.info/www/bejne/eaKyl5xqZrGZetk
@rafibasha18403 жыл бұрын
@@statquest ,Thank you Josh …I am watching your videos daily …Please make videos on RNN GAN LSTM and NLP ..
@statquest3 жыл бұрын
@@rafibasha1840 I plan on making those in the spring.
@rafibasha18403 жыл бұрын
@@statquest ,Thank you Josh
@alexfeng756 ай бұрын
In "d SSR/ d Predicted", is Predicted a single value like Predictedi (with index i ) or a collection of values as i can range from 1 to 3?
@statquest6 ай бұрын
A collection of values. You can tell if you keep watching the video and see how it is used.
@alexfeng756 ай бұрын
@@statquest thank you for the prompt reply, Josh! you are the best!
@fndpires2 жыл бұрын
THIS MAN IS AN ANGEL! :D QUADRUPLE BAM!
@statquest2 жыл бұрын
Thank you! :)
@dodosadventures759310 ай бұрын
Hi Josh ! Love your videos, could you please explain why normal distribution is used to initialise w3 and w4 or else if you have already uploaded a video on normal distribution can you tag it
@statquest10 ай бұрын
It's just a standard way to do it. However, you can use uniform distributions or other distributions if you would like. One thing people like about the normal distribution is that changing the standard deviation for each hidden layer can make it easier to train deeper models (models with lots of hidden layers).
@dahirou_harden6 ай бұрын
Just wanted to clarify. Is the output given at the end of each pass an actual function or just a set of 3 points (summed from y1 and y2)? Thanks!
@statquest6 ай бұрын
What time point, minutes and seconds, are you asking about?
@dahirou_harden6 ай бұрын
@@statquest Basically I'm just confused about if the final curve approximating the 3 points is a "curve" as in a polynomial, or just a set of 3 points. Because when we add the two activation functions, you talked about adding them at each point as if we were adding the equations for the lines themselves, in order to get the final line. But it seems like instead we're just adding the y values at each input (the 3 given inputs) rather than a line itself..?
@dahirou_harden6 ай бұрын
@@statquest At 4:03 for example.
@statquest6 ай бұрын
@@dahirou_harden The adding is done for all possible x-axis coordinates (or input values), and thus, we are adding the lines themselves, not just the 3 points. The points (or circles) on the lines are just to illustrate the concept of adding y-axis values, and do not to limit the adding to just those points.
@elmoreglidingclub30304 жыл бұрын
Great video and explanation. But I'm missing something simple. The blue and orange lines are added to render the green line, right? It appears (I'm squinting) that, after convergence, the middle dose (the 1/2 dose; actually, just to the left of it) value is 1 but the intersection of the blue and orange lines is at about -.5. Adding those together gives -1, not 1. What am I missing??
@statquest4 жыл бұрын
You forgot to add the bias term.
@_epe25903 жыл бұрын
BAM!! I finally understand but.... Am I correct to say that if I was optimizing 3 weights and biases at the same time i would do gradient descent in a function with 3 dimensions (1 for each weight and bias)??
@statquest3 жыл бұрын
Yes
@emkahuda7764 жыл бұрын
As usual, your videos are totally awesome, I like them much and easy to understand. I wonder if you will make a video about spatial transcriptomic analysis please since you uploaded the scRNA three years ago considering the spatial analysis is now more famous?
@statquest4 жыл бұрын
I'll keep it in mind.
@Ruhgtfo3 жыл бұрын
Yeaaaa finally new episodde
@statquest3 жыл бұрын
:)
@kousthabkundu19964 жыл бұрын
Sir, one question I have. when you said we randomly select w3 and w4 from standard distrib in the first iteration, that is any values from standard distrib table or we select no's w.r.t. given dataset?
@statquest4 жыл бұрын
In this example I selected random value from a standard normal distribution. This is a normal distribution with mean = 0 and standard deviation = 1 and is completely independent of the data.
@omkarghadge84323 жыл бұрын
YOU ARE THE BEST!
@statquest3 жыл бұрын
Thanks!
@ertreri2 ай бұрын
superb, thanks a lot.
@statquest2 ай бұрын
Thanks!
@akshaynn46512 жыл бұрын
when i plug the value -1.43 into the equation log(1 + e**x) i get 0.093. should I use the base 10 for log or a different one?
@statquest2 жыл бұрын
In statistics, data science, machine learning and almost all programming languages, the default base for the log function is 'e', and that's what I use here.
@akshaynn46512 жыл бұрын
@@statquest Thanks, this was very helpful.
@NoNonsense_012 жыл бұрын
I think for the sake of clarity and rigour, it should be noted that all of the differentials are partial. Otherwise, some people may wonder why implicit differentiation wasn't used in such cases where W2 was differentiated with respect to W1 or vice versa.
@statquest2 жыл бұрын
noted
@84mchel3 жыл бұрын
Dw_3 = (observed-predicted) * y1. The output is also a softplus activation. Why isn’t this derivative in the chainrule? Thank you!
@statquest3 жыл бұрын
We include the derivative of the SoftPlus activation function in the next video (part 2), when we optimize all of the weights and biases, including the ones to the left of the activation functions: kzbin.info/www/bejne/fXy9oIJ-jayWgtE
@salihylmaz46944 жыл бұрын
So underrated
@statquest4 жыл бұрын
Glad you think so! :)
@creativeo914 жыл бұрын
Please make a tutorial on Gaussian mixture model and EM algorithm
@statquest4 жыл бұрын
I'll keep that in mind.
@creativeo914 жыл бұрын
@@statquest thanks.. It will be really helpful 🙂
@GuidedTrading_2 жыл бұрын
basically, taking derivatives of losses with respect to unknown terms to find how quickly the loss is changing if we change the parameters is the essence of this whole Machine learning thing.
@statquest2 жыл бұрын
yep
@ianholloway9493Ай бұрын
Why do you not average the derivative of the SSR (the gradient). What I mean by average is dividing the derivative of the SSR by the number of training examples. I read online that this is more common practice unless we are doing stochastic gradient descent. I was a little bit confused as this was not clarified. Thanks for the video though it really helped me understand the topic better.
@statquestАй бұрын
As the video shows, it works just fine without averaging the SSR. However, we have a relatively small dataset and that keeps the derivative from getting out of hand. If we had tons and tons of data, the SSR alone might lead to a massive derivative that's too big to be helpful, and averaging could help with that.
@SM-xn9bv Жыл бұрын
I can not thank you enough!
@statquest Жыл бұрын
Thanks!
@parijatkumar68664 жыл бұрын
Hey Josh, great video as always!! Can you also please point to some source with examples (with answers) which we can practice on our own? I know there are tons of them on internet, but you know, your selection will be really helpful as always!!
@statquest4 жыл бұрын
I don't have anything yet, but I will create a "how to do neural networks" video soon.
@396me9 ай бұрын
If there are only 3 points in the inputs, how it’s possible to get 5 points for getting orange or blue curve😢, please help me to understand
@statquest9 ай бұрын
What time point, minutes and seconds, are you asking about?
@396me9 ай бұрын
@@statquest 11:13
@statquest9 ай бұрын
@@396me Since the range of possible input values goes from 0 to 1, we can just plug in numbers, from 0 to 1, to see the shape of the curve that the neural network is using for this dataset.
@sattanathasiva80803 жыл бұрын
Many many thanks for your videos.
@statquest3 жыл бұрын
Glad you like them!
@hamidfazli69362 жыл бұрын
You are amazing!
@statquest2 жыл бұрын
Wow, thank you!
@gf1987 Жыл бұрын
very informative ty
@statquest Жыл бұрын
:)
@cairoliu50764 жыл бұрын
great content!
@statquest4 жыл бұрын
Thanks!
@shubhamkumar-nw1ui2 жыл бұрын
My regards to the friendly folks of the genetics department of University of North Carolina at Chapel Hill
@statquest2 жыл бұрын
Thanks!
@giorgosmaragkopoulos91109 ай бұрын
So what is the clever part of back prop? Why does it have a special name and it isn't just called "gradient estimation"? How does it save time? It looks like it just calculates all derivatives one by one
@statquest9 ай бұрын
Backpropagation refers to how the gradient is calculated. Gradient Descent is how the gradient is used.
@macknightxu2199 Жыл бұрын
Hi, how to understand back? not forward or other direction? I mean the video is nice, but didn't explain to clear why backward is important. Why not forward?
@macknightxu2199 Жыл бұрын
got it. At the back point, the derivative is much simpler than the derivatives at the front. So, as we would like to go from simple to hard, we'd choose from back to front. That's why it's backpropagation, which is discussed in the next video. BR
@statquest Жыл бұрын
bam! :)
@chicagogirl98627 ай бұрын
OMGGGGG, Is that you who sings at "big bang theory", S12, E24???!!!!!
@statquest7 ай бұрын
I wish! :)
@hungp.t.99152 жыл бұрын
around 150,000 steps and w3, w4, b3 still nowhere near -1.22, -2.30, 2.61 (lot lot of zeros) guess I need more steps toward the end of the video, may I ask how many steps did you take, Mr. Josh?
@statquest2 жыл бұрын
What learning rate are you using? I used 0.1 and optimized everything in less than 50,000 steps.
@hungp.t.99152 жыл бұрын
@@statquest I think I have trouble with gradient descent involved more than one parameter given: y₁,₁ = 0.21 y₁,₂ = 0.82 y₁,₃ = 2.04; y₂,₁ = 1.02 y₂,₂ = 0.26 y₂,₃ = 0.05; learning rate: 0.1 - First iteration, is as show in the video: w3 = 0.36 w4 = 0.64 b3 = 0 predicted1: (y₁,₁ × w3) + (y₂,₁ × w4) + b3 = 0.72 predicted2: (y₁,₂ × w3) + (y₂,₂ × w4) + b3 = 0.46 predicted3: (y₁,₃ × w3) + (y₂,₃ × w4) + b3 = 0.77 d SSR / d w3 = 2.58 d SSR / d w4 = 1.26 d SSR / d b3 = 1.90 - Second iteration, maybe I am wrong somewhere in this step: step size of w3 = 2.58 × 0.1 = 0.258 step size of w4 = 1.26 × 0.1 = 0.126 step size of b3 = 1.90 × 0.1 = 0.19 w3 = 0.36 − 0.258 = 0.1 w4 = 0.64 − 0.126 = 0.51 b3 = 0 − 0.19 = −0.19 predicted1: (y₁,₁ × w3) + (y₂,₁ × w4) + b3 = 0.21 × 0.1 + 1.02 × 0.51 - 0.19 = 0.35 predicted2: (y₁,₂ × w3) + (y₂,₂ × w4) + b3 = 0.03 predicted3: (y₁,₃ × w3) + (y₂,₃ × w4) + b3 = 0.04 d SSR / d w3 = −2 × (0 − 0.35) × 0.21 + −2 × (1 − 0.03) × 0.82 + −2 × (0 − 0.04) × 2.04 = −1.28 d SSR / d w4 = −2 × (0 − 0.35) × 1.02 + −2 × (1 − 0.03) × 0.26 + −2 × (0 − 0.04) × 0.05 = 0.2 d SSR / d b3 = −2 × (0 − 0.35) + −2 × (1 − 0.03) + −2 × (0 − 0.04) = -1.1 (all results are approximate)
@hungp.t.99152 жыл бұрын
No reply from Mr. Josh. Guess I will leave this one for the future. Anyway, nice video. A great help to people with no math background like me.
@statquest2 жыл бұрын
@@hungp.t.9915 The KZbin comment section is not ideal for debugging code. However, one day I'll post mine and hopefully that will help.
@thepodfunnel3 жыл бұрын
BAM! that was good!
@statquest3 жыл бұрын
Thanks!
@karrde6666663 жыл бұрын
The right way to learn, textbooks and lectures should be obsolete
@statquest3 жыл бұрын
bam! :)
@roberthuff31226 ай бұрын
The nested chain rule.
@statquest6 ай бұрын
:)
@zer9953 жыл бұрын
Triple BAM!!! That's what I said when I knew my girl, married her and got children :)