I rerecorded this solution and made it much better, please watch this instead: kzbin.info/www/bejne/fIvIYYinfrigi9k
@abdullahtahan8 ай бұрын
please add monthly subscription so i can try it before paying full year
@bagup_alpharetardsАй бұрын
@@abdullahtahan please pay yearly subscription as it is more convenient
@reggiehurley1479 Жыл бұрын
usually neetcode has the best solutions/explanations but i gotta say this is the first time ive seen him have the most confusing one lol. Maybe there's a reason he did it this way that will be beneficial for us down the line but it seems to be the worst solution for permutations ive seen. maybe because of that i should understand it lol. i love neetcode btw - best youtuber by far.
@hbhavsi Жыл бұрын
I agree with your analysis. I was too confused and disappointed in this solution. The editorial solution on LC is neat and easy to understand.
@c_hlee Жыл бұрын
yeah.. this neetcode solution was destroying me until i looked at the leetcode editorial that made perfect sense
@yuqian822 Жыл бұрын
I agree with you! I was doubting myself lol this solution doesn't work for me. (I love this guy!)
@imang3719 Жыл бұрын
I felt the same and I was like it's probably only me, glad I'm not the only one, lol. Still love neetcode for all the videos and explanations
@Bullimicporkupine10 ай бұрын
i think the idea is sometimes you have to do a bit of the heavy-lifting, cant expect NC to spoonfeed us everything
@jz16079 ай бұрын
Every time I feel stupid and not able to solve a leetcode question, I get to your video for the explanation and the moment I realize the video has 200k+ views I understand that I"m not stupid, just a regular human like hundreds of thousands others.
@dnc0776 ай бұрын
I'm feeling stupid too - I feel incompetent. I thought this would be a walk in the park.
@adama77526 ай бұрын
@@dnc077 it's okay bro, it's just training your brain for pattern recognition. It requires effort + time !
@VigneswaraaMSАй бұрын
@@adama7752 how to do that practice. Whenever I try to solve such a leetcode problem I struggle a lot. At the end of the day I search for answers and solve them on my own. But I want to solve a problem of my own without any video or references.
@Grawlix992 жыл бұрын
We can avoid popping elements and passing in the remaining list by simply swapping elements. Anyways, an alternative backtracking approach for those who are interested (very short, code, too!): def permute(self, nums: List[int]) -> List[List[int]]: res = [] def backtrack(i): if i >= len(nums): res.append(nums[:]) for j in range(i, len(nums)): nums[i], nums[j] = nums[j], nums[i] backtrack(i+1) nums[i], nums[j] = nums[j], nums[i] backtrack(0) return res
@m3hdim3hdi Жыл бұрын
so beautiful idea, where did you get the inspiration?
@rishabsaini8347 Жыл бұрын
I also originally solved it by swapping and undoing the swapping, instead of pop and push into the array.
@rishabsaini8347 Жыл бұрын
@@m3hdim3hdi Permutation is just number of ways to put stuff say in a row or on a circle, so swapping is analogous to changing the order in the row.
@juggles5474 Жыл бұрын
Thank you for this beautifully intuitive solution
@samuraijosh1595 Жыл бұрын
in haskell: import Data.List permute :: Eq a => [a] -> [[a]] permute [] = [[]] permute xs = [x : ys | x
@siddharthgupta8483 жыл бұрын
Hi, actually we can also use this template - class Solution: def permute(self, nums: List[int]) -> List[List[int]]: result = [] n = len(nums) def backtrack(perm): if len(perm) == len(nums): result.append(perm.copy()) return for i in range(n): if nums[i] in perm: continue perm.append(nums[i]) backtrack(perm) perm.pop() backtrack([]) return result This is similar to how we solve combination problem , we have to do some slight modification .
@himanshu64892 жыл бұрын
what's the use of perm here? where we're using it?
@siddharthgupta8482 жыл бұрын
@@himanshu6489 perm here is used to store individual permutation
@jorgecabiedes18772 жыл бұрын
Not as efficient since checking if nums[i] in perm is linear worst case, you could maybe use a set instead to make it constant
@anmolmansingh5840Ай бұрын
@@jorgecabiedes1877 But set will lose the ordering, which we need to preserve in permutations. Hence, we use list
@TheElementFive3 жыл бұрын
The nuances of the recursive logic in these problems are so hard to visualize ahh!
@Avinash_kumar_IITDАй бұрын
No bro you don't need to visualize. You just need to understand the structure of backtracking.
@sniff46433 жыл бұрын
lmao this video was so good I watched the first few minutes of it and was able to code the problem myself. I then coded another leetcode medium backtracking by myself based on the intuition i got from this video all by myself with 86% time complexity. And these are the first 2 times I have ever done a back tracking problem. you are good asf dude.
@Shingorani3 жыл бұрын
i think you're good asf for being able to do that based off a few mins of this vid
@fatropolis69092 жыл бұрын
This guy lying thru his fokin teeth
@TheElementFive2 жыл бұрын
riiiight
@demaxl73211 ай бұрын
@@fatropolis6909How do you know?
@Ron-op8es3 жыл бұрын
thank u ive been searching forever, this is the only video on this problem with this much effort involved
@NeetCode3 жыл бұрын
Thanks, I'm glad it was helpful =)
@jsarvesh3 жыл бұрын
We can use the index of nums array itself and compute the permutations instead of popping the elements from the beginning and appending it later def permute(self, nums: List[int]) -> List[List[int]]: """ Angle of Attack - use recursive method - base case when one element - recursive call to compute permutation except that element """ result = list() # base case -- least valid input if len(nums) == 1: return [nums] for idx in range(len(nums)): # compute the permutation for ith element current_nums = nums[:idx] + nums[idx+1:] # recursive case perms = self.permute(current_nums) # permutation generated above don't have the # ith element, so append it for perm in perms: perm.append(nums[idx]) # update the overall results with all (multiple) permutations result.extend(perms) #return all permutations return result
@sreenivaskrishna73513 ай бұрын
Thank you for alll you do @NeetCode slightly more intuitive for me our remaining choices keep shrinking class Solution(object): def permute(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ result = [] def generate_permutations(permutation, remaining): if not remaining: result.append(permutation) return for i in range(len(remaining)): generate_permutations(permutation + [remaining[i]], remaining[:i] + remaining[(i + 1):]) generate_permutations([], nums) return result
@rahulprasad82432 жыл бұрын
How did you map the decision tree to the recursion logic?
@poorpanda9033 Жыл бұрын
Thank you so much man !! Please don't delete this videos
@bilalmunawar60583 жыл бұрын
Thank you! Backtracking builds potential candidates to solution and abandons a candidate if it no longer leads to a valid solution - this is also called pruning the recursion tree. Can anyone please explain in which instance do we abandon a candidate here? I just want to understand why it falls in backtracking category
@H_Blackburn2 жыл бұрын
We abandon a candidate when we pop(0)
@JimmyCheng3 жыл бұрын
awesome contents as always. I found your channel to be the best Leetcode problem solution explanation channel on KZbin!
@msnhao2 жыл бұрын
I think you're doing duplicate work here. For example, if nums = [1, 2, 3, 4, 5, 6] Then you would call: permute([1, 2, 3, 4, 5]) + append 6 on everything returned and: permute([1, 2, 3, 4, 6]) + append 5 on everything returned However, that means you'll be computing permute([1, 2, 3, 4]) twice, which is inefficient. You can make this more efficient by starting from the bottom up. i.e. [1] -> [1, 2], [2, 1] - > [1, 2, 3], [1, 3, 2], [3, 1, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1] Here, for each permutation of the length n, you create n+1 new lists of length n+1 where you insert the new number into every possible position. This way, you only calculate each sub-permutation once
@danielsun7162 жыл бұрын
My thought is initially the same with Neetcode. I draw a decision tree from an empty list. So I write this code for a straight forward understanding. def permute(self, nums: List[int]) -> List[List[int]]: res = [] def backtrack(nums, perm): if not nums: res.append(perm) return for i in range(len(nums)): backtrack(nums[: i] + nums[i + 1:], perm + [nums[i]]) backtrack(nums, []) return res
@danny65769 Жыл бұрын
I had the same solution as you. I think you need to do perm.copy() when you append to res on line 5?
@danielsun716 Жыл бұрын
@@danny65769 Yes, you can. But you dont have to. perm is not a global variable, so we can just append perm, not perm.copy()
@likkiii07 Жыл бұрын
Hey, I have used the same tree but a slightly diff approach where u call recursion if that element doesn't exist in perm array def permute(self, nums: List[int]) -> List[List[int]]: res = [] def backtrack(perm): # base case if len(perm) == len(nums): res.append(perm) return for num in nums: if num not in perm: backtrack(perm + [num]) backtrack([]) return res
@jason1666 Жыл бұрын
it's beautiful
@samuraijosh1595 Жыл бұрын
@@jason1666most elegant solution: in haskell: import Data.List permute :: Eq a => [a] -> [[a]] permute [] = [[]] permute xs = [x : ys | x
@udittalks94910 ай бұрын
You know what I about this guy is the ease which he explains the problems I also saw his system design course for beginners ..just wonde
@kingrudong97618 ай бұрын
Note that all possible permutations of one array with distinct integers is """pop one from the array, and find all possible permutations from the exist""" . For example, for array like [1, 2, 3], first pop one from it, like 1, then 1 is the first number of the permutation we are finding. Now arrray [2, 3] remains. Continue to find until there's only one number that has not been processed.(Constrain: nums.length >= 1) Add it after the permutation and append to the result list. def permute(self, nums: List[int]) -> List[List[int]]: res = [] cur_permu = [] def dfs(cur_list): if len(cur_list) == 1: res.append(cur_permu.copy() + cur_list) return for index, num in enumerate(cur_list): cur_permu.append(num) dfs(cur_list[:index] + cur_list[index + 1:]) cur_permu.pop() dfs(nums) return res this solution is really efficient.
@sidazhong20192 жыл бұрын
we can use the similar approach like problem 17, the only difference is string and list. list needs deep copy. just a little bit slower than average. 17: rs = [] def loop(k,v): if k == len(digits): rs.append(v) return for vv in hashmap[digits[k]]: loop(k+1,v+vv) if digits: loop(0,"") return rs 46 rs = [] def loop(k,v): if k==len(nums): rs.append(v) return for vv in nums: tmp=v[:] if vv not in tmp: tmp.append(vv) loop(k+1,tmp) loop(0,[]) return rs
@vishweshganapathy8189 Жыл бұрын
def permute(self, nums): resultList = [] self.backtrack(resultList, [], nums) return resultList def backtrack(self, resultList, tempList, nums): if len(tempList) == len(nums): resultList.append(list(tempList)) return for number in nums: if number in tempList: continue tempList.append(number) self.backtrack(resultList, tempList, nums) tempList.pop()
@J0RdN-w Жыл бұрын
Such clean solution and i just come up with this solution class Solution: def permute(self, nums: List[int]) -> List[List[int]]: if len(nums)
@dzmitryk96583 жыл бұрын
Keep doing this! It's really good!
@shreshthkaushik-hu8bz3 ай бұрын
I wrote it differently. Might or might not be more useful def permute(self, nums: List[int]) -> List[List[int]]: # Create a list to store the output and a set to keep track of all the taken numbers output, taken = [], set() # Create a function to take every permutation of unique numbers def permutations_generator(permutation: list): # Base case if the length of permutation is equal to number of elements in nums if len(permutation) == len(nums): output.append(permutation.copy()) return # Go through each number in nums and add that into permutation list if its unique for number in nums: if number not in taken: permutation.append(number) taken.add(number) # Run permutations_generator after adding one number permutations_generator(permutation=permutation) # After the permutations_generator has completed, remove the added numbers for further processing permutation.pop() taken.remove(number) permutations_generator(permutation=[]) return output
@AlanSchooll2 жыл бұрын
solution in c++ class Solution { // vector array for result vector> result; // set to remember which element is already selected set st; void permutation(vector &nums, vector &res) { // if the size of res become size of num pushed res in result vector and array if (res.size() == nums.size()) { result.push_back(res); return; } for (int i = 0; i < nums.size(); i++) { // check if the current number is not chosen if (st.find(nums[i]) == st.end()) { // insert number in set to remember that the following number is already selected st.insert(nums[i]); // insert current number in res array res.push_back(nums[i]); // recursively call permutation to select another number permutation(nums, res); // on backtrackingremove the current selected number from selected because we are done with possible solution with that selected number st.erase(nums[i]); //also remove from res array res.pop_back(); } } } public: vector> permute(vector &nums) { vector res; permutation(nums, res); return result; } };
@softwareengineer8923 Жыл бұрын
your explanation and solution is pretty fluent.Thanks for a great video,
@hoyinli74623 жыл бұрын
your ans is super clear, much better than the leetcode official one. Liked
@agnishwarbagchi49352 жыл бұрын
def permute(self, nums: List[int]) -> List[List[int]]: output = [] def backtracking(res): if len(res) == len(nums): output.append(list(res)) for i in nums: if i not in res: res.append(i) backtracking(res) res.pop() backtracking([]) return output
@rasi94412 жыл бұрын
you should add return after output.append(list(res)), so that base can return from there itself rather than going again into the loop to exit. thanks
@almasmirzakhmetov8590 Жыл бұрын
it seems I fully understand your idea but when it comes to writing code it requires from me a lot thinking, struggling
@bree9895 Жыл бұрын
us bestie
@inderwool Жыл бұрын
Thanks! Never thought to think of it in terms of a decision tree.
@danielsun7162 жыл бұрын
Three different ways to solve including Neetcode's solution. And I think this problem's three solutions inspired me so much, so sharing with you guys. def permute(self, nums: List[int]) -> List[List[int]]: if len(nums) == 1: return [nums[:]] res = [] for i in range(len(nums)): n = nums.pop(0) perms = self.permute(nums) for perm in perms: perm.append(n) res.extend(perms) nums.append(n) return res # res = [] # def backtrack(perm): # if len(perm) == len(nums): # res.append(perm.copy()) # return # for i in range(len(nums)): # if nums[i] in perm: # continue # perm.append(nums[i]) # backtrack(perm) # perm.pop() # backtrack([]) # return res # res = [] # def backtrack(nums, perm): # if not nums: # res.append(perm) # return # for i in range(len(nums)): # backtrack(nums[: i] + nums[i + 1:], perm + [nums[i]]) # backtrack(nums, []) # return res
@DhruvOberoi Жыл бұрын
You can optimise your second solution's time complexity by maintaining a set in addition to the perm array that will make "if nums[i] in perms" O(1) constant time as opposed to O(n). The tradeoff is with the space complexity as that will now be slightly less optimal given you have to maintain a hashset that could take O(n) space.
@danielsun716 Жыл бұрын
@@DhruvOberoi yup
@danny65769 Жыл бұрын
I think the 3rd solution is easiest to understand.
@RiyaBaliyan-p5l6 ай бұрын
class Solution: def permute(self, nums): res =[] perm= [] def dfs(): if len(perm) == len(nums): res.append(perm.copy()) return for n in nums: if n not in perm: perm.append(n) dfs() perm.pop() dfs() return res
@walterchang1046 Жыл бұрын
Why is that local variable : "result" won't initialize when "perm = self.permute(nums)" been executed? Isn't it better to avoid setting a local variable when dealing with a recursion function?
@leo6d9854 ай бұрын
It would have been so good for you to explain the deviation from the traditional bactracking approach. This is very hard to understand, very counter intuitive. Still, love your work.
@Codenames5602 жыл бұрын
thanks man, i had hard time understanding this problem but this video helped a lot!
@redye5858 Жыл бұрын
Love everything you have done but this honestly should be a 25-min video
@Karim-nq1be Жыл бұрын
I really like your explanation, but this solution seems a bit too convoluted for such a simple problem. I get that it's expected in some interviews, still I find it quite silly.
@unnhao3 ай бұрын
I think use `splice` is more easy to track and understand, and Permutations || also can use the same code to add some condition to solve. /** * @param {number[]} nums * @return {number[][]} */ var permute = function(nums) { let res = []; if (nums.length === 1) { return [nums.slice()]; } for(let i = 0; i < nums.length; i++) { let n = nums.splice(i, 1)[0] let perms = permute(nums); for(let perm of perms) { perm.push(n); } res = [...res, ...perms]; nums.splice(i, 0, n) } return res; };
@Adnarimel2 жыл бұрын
I'm crying -- multiple comments begging for the time / space complexity and still no answer... i am also begging
@djplt12402 жыл бұрын
I believe time is O(n!) (maybe O( n! ^2)) because each recursion is looping roughly n^2 then (n-1)^2... (e.g an array of length for is looping roughly 4*3*2*1). Space (Extra not including the result) is O(n), because it's the maximum recursion depth.
@harishsn48662 жыл бұрын
Can you please let us know the time complexity of this? It's still gonna be O(∑k=1NP(N,k)) right? Since we are calling the recursive function for every element? It would be helpful if you can elaborate in the comments section and pin it.
@josecarlosdelcastillo43982 жыл бұрын
+1 to this
@MasterAraid Жыл бұрын
my guess is that since we are doing O(n) work per recursive call, and since the algorithm is exponential (two recursive calls with constant difference), the total runtime is O(n2^n)
@denysivanov3364 Жыл бұрын
@@MasterAraid N factorial N!
@shrimpo64163 жыл бұрын
NEET CODE INDEED! I wish I've watched your videos earlier. Such clean solution written in Python!
@AchyutSarmaB Жыл бұрын
Here is a simpler solution that goes very well with the pen and paper method explained in the video to keep things consistent. Cheers! ``` class Solution: def permute(self, nums: List[int]) -> List[List[int]]: if len(nums)==1: return [nums] result = [] for i in range(len(nums)): remaining = [j for j in nums if j!=nums[i]] current_permutation = [nums[i]] self.dfs(remaining, current_permutation, result) return result def dfs(self, remaining, current_permutation, result): # base case if len(remaining)==1: current_permutation.extend(remaining) result.append(current_permutation.copy()) return # take a decision for each remaining element for j in range(len(remaining)): new_remaining = remaining[:j]+remaining[j+1:] self.dfs(new_remaining, current_permutation+[remaining[j]], result) ```
@RojinSharma-c8l5 ай бұрын
Easier version, the way neetcode did it for combinations: class Solution: def permute(self, nums: List[int]) -> List[List[int]]: visit = set() res = [] n = len(nums) def backtrack(permute, visit): if len(permute) == len(nums): res.append(permute.copy()) return for i in range(len(nums)): if nums[i] not in visit: permute.append(nums[i]) visit.add(nums[i]) backtrack( permute, visit ) visit.remove(nums[i]) permute.pop() backtrack([], visit) return res
@amirilifee Жыл бұрын
I still dont get it how u come up with these brilliant ideas?! When i see your solution, i wonder why i dont come with this idea if its so easy? haha Thanks brother!!
@samuraijosh1595 Жыл бұрын
in haskell: import Data.List permute :: Eq a => [a] -> [[a]] permute [] = [[]] permute xs = [x : ys | x
@light_70 Жыл бұрын
I have watched this three times, this was complicated.
@daniyalkabir65272 жыл бұрын
Can we thank NeetCode enough?
@NeetCode2 жыл бұрын
Happy to help :)
@stith_pragya10 ай бұрын
Thank You So Much for this wonderful video.......🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻
@markomekjavic2 жыл бұрын
Really good video - makes concepts so much easier to understand! But I do have a question, why do you return [nums.copy()] instead of. just [nums] as a base case?
@meghrajgupta45602 жыл бұрын
To not get caught up in the call by reference problem. By default lists are passed on by reference rather than value.
@GESAM1212 жыл бұрын
Great video, can you add in the bookmark for starting explaining the solution like you have in other videos?
@sujithameriga73488 ай бұрын
Most beautiful code. I had to use a visualizer to fully understand it though.
@ballzi31225 ай бұрын
what visualizer?
@sujithameriga73482 ай бұрын
@@ballzi3122 To debug the code you can use some tools instead of doing it yourself. Specially useful with problems that have recursion.
@ravikant-hi8mz3 жыл бұрын
But this code does not work on leetcode. It gives errors
@vinayakhaunsnur1327 Жыл бұрын
tq very much i learnt more of dsa by your problems
@prasantheits552 жыл бұрын
Is line 14 logically correct?? What does it mean?? for perm in perms: perm.append(n)
@SukruthaKarthik5 ай бұрын
Thank you Neetcode. Can you show the time complexity analysis for this solution?
@lampham7874 Жыл бұрын
The explanation is beautiful, thanks.
@letsgoooooo10 ай бұрын
Much easier solution- class Solution: def permute(self, nums: List[int]) -> List[List[int]]: n = len(nums) ans = [] used = set() def dfs(arr): if len(arr) == n: ans.append(arr.copy()) return for num in nums: if num not in used: used.add(num) arr.append(num) dfs(arr) arr.pop() used.remove(num) dfs([]) return ans
@Gribozhuy Жыл бұрын
Simple java solution: class Solution { List result = new ArrayList(); public List permute(int[] nums) { rec(nums, new HashSet(), new ArrayList()); return result; } private void rec(int[] nums, Set used, List temp) { if (temp.size() == nums.length) { result.add(temp); } for (int i=0; i < nums.length; i++) { if (!used.contains(i)) { Set newUsed = new HashSet(used); newUsed.add(i); List newTemp = new ArrayList(temp); newTemp.add(nums[i]); rec(nums, newUsed, newTemp); } } } }
@edwardteach23 жыл бұрын
Did it without the use of pop(0) def permutations_num(nums): result = [] if len(nums) == 1: return [nums[:]] for _ in range(len(nums)): n = nums[0] perms = permutations_num(nums[1:]) for perm in perms: perm.append(n) # [2,3]+[1] and [3,2]+[1] individually result.extend(perms) # [2,3,1],[3,2,1] all together into the result return result print(permutations_num([1,2,3]))
@NeetCode3 жыл бұрын
That's great, I like this one better!
@kai-chiehhuang39393 жыл бұрын
The first few lines of the outer for loop should be like this in order to work for i in range(len(nums)): n = nums[i] perms = permutations_num(nums[:i]+nums[i+1:])
@ssy135423 жыл бұрын
class Solution: def permute(self, nums: List[int]) -> List[List[int]]: result = [] if len(nums) == 1: return [nums[:]] for i in range(len(nums)): n = nums[i] perms = self.permute(nums[:i]+nums[i+1:]) for perm in perms: perm.append(n) # [2,3]+[1] and [3,2]+[1] individually result.extend(perms) # [2,3,1],[3,2,1] all together into the result return result
@hailei2 жыл бұрын
@NeetCode the pop(0) has O(n) time complexity. This solution might be better.
@edwardteach22 жыл бұрын
@@hailei In my interviews, I still resort to Neetcode's solution lol
@AyushSingh-yq4so11 ай бұрын
Nice solution Can you please tell about space and time complexity Thanks
@kshitijg29793 жыл бұрын
Thanks
@ashishm88503 жыл бұрын
Very well explained. Thanks a lot!
@alwayssporty81023 жыл бұрын
hey can u explain what the 10th line exactly does how does it gives all permutations of the remaining 2 digits??
@delta619 Жыл бұрын
@@alwayssporty8102 for i in range(len(nums)): n = nums.pop(i) perms = self.permute(nums) for perm in perms: perm.append(n) result.extend(perms) nums.insert(i, n) you can do this instead it basically takes the digit out from the number and lets the permutation run on rest of the combination of digits.
@bonafontciel3 жыл бұрын
I like your channel and appreciate the time you take. However this solution is too pythonic. Better to swap, backtrack, swap
@SuperAce7809 ай бұрын
this was an awesome solution! thanks
@amreshgiri2 жыл бұрын
What would be the time complexity of this algorithm?
@miyamotomusashi45562 жыл бұрын
I wrote this: class Solution: def permute(self, nums: List[int]) -> List[List[int]]: """ :type nums: List[int] :rtype: List[List[int]] """ if len(nums) == 1: return [nums] elif len(nums) == 0: return [[]] result = [] sub = self.permute(nums[1:]) for arr in sub: for i in range(len(arr)+1): temp = arr.copy() temp.insert(i, nums[0]) result.append(temp) return result It's almost self explanatory.
@bhushanmahajan21502 жыл бұрын
Could you please tell the time and space complexity of this solution?
@spencerlong43932 жыл бұрын
O(n*n!) for time. The way I thought about it is that there are n! permutations for an array of length n. For each permutation, we need to make n calls to get to the leaves (permutations), so O(n * n!). As for space, I think it's O(n!). We have to store n! permutations.
@aalindsingh9272 жыл бұрын
Can anyone explain how using a slicing operator (nums[:]) made our solution faster compared to nums.copy()
@australianpanda27132 жыл бұрын
it doesnt. leetcode is just flaky
@keshavsanthanam3767 Жыл бұрын
[:] is a deep copy, not a shallow copy. not sure how it helps tho...
@emmatime20163 жыл бұрын
Actually I am a java fan but your explanation is really helpful. The recursion logic you are using is pretty easy to understand. Thanks!
@howardlam61812 жыл бұрын
no need to pop and appened if you just swap the elements and shift start position and swap them back afterwards.
@franciscosauceda25113 жыл бұрын
Hi, Thank you for making this video! I have one question though. Why do you need to make a copy of the base case ( nums[:] ) ?
@shuruizhao41123 жыл бұрын
Say if for the base case, [nums] instead of [nums[:]] is returned, perms = self.permute(nums) essentially becomes perms = [nums] (note nums is a list), and the iterator perm in perms is now equivalent to nums. perm.append(n) modifies not only perm, but also nums which shares the reference of perm. To see the difference, you can do a print(perm) and print(nums), or print(perm==nums) after perm.append(n) in for perm in perms loop.
@abishekanbarasan55373 жыл бұрын
Deep copy vs shallow copy
@siriuss_73 жыл бұрын
@@abishekanbarasan5537 what is the difference?
@KarinaRodriguez-yv7mf2 жыл бұрын
How would this look like in Java? I've been racking my brain on how to not append to sublists that have already been appended to
@TechOnScreen2 жыл бұрын
in Java, you need to add it to the list instead
@vinitrinh2 жыл бұрын
Whats the time and space complexity and how can we explain it?
@nguyen-dev2 жыл бұрын
If using mutable collection, time complexity is exactly the space complexity for output: O(n * n!). The list instance is created "only" at the base case. Then the result of base case is always reused and mutated with O(1) time complexity to add single value. Using immutable collection, I am not sure how to compute it but it will be much slower.
@aryanrahman3212 Жыл бұрын
Just wrote my own version of the algorithm you explained, thank you so much!
@PippyPappyPatterson Жыл бұрын
I think building the permutation on the way down is way more intuitive than on the way back up. Please verify my complexity analysis at the bottom: ```python class Solution: def permute(self, nums: List[int]) -> List[List[int]]: res = [] def dfs(cur: list[int], nums: list[int]) -> None: if not nums: res.append(cur.copy()) return for _ in range(len(nums)): cur.append(nums[-1]) temp = nums.pop() dfs(cur, nums) nums.append(temp) cur.pop() nums = nums[1:] + nums[:1] dfs([], nums) return res # O(n! * n) O(n) ```
@Flame-hashira-akash5 ай бұрын
I like the solutions by neetcode but this one is particularly very confusing and does not come naturally. The following approach builds each permutation choosing one element at a time and further building up the solution. class Solution: def permute(self, nums: List[int]) -> List[List[int]]: res = [] self.dfsPermute(res,nums,[]) return res def dfsPermute(self,res,nums,curr): if len(curr)==len(nums): # base case when we found one permutation solution res.append(curr.copy()) # go over each element add it to the list for n in nums: # check to avoid dulicate value in the arr if n in curr: continue else: # call recursively for each case curr.append(n) self.dfsPermute(res,nums,curr) #undo the last chosen element and go to the other decision branch tree curr.pop()
@orangethemeow2 жыл бұрын
In the picture explanation, should the second subtree be [3, 1]? We popped the first element from [2, 3, 1]
@The6thProgrammer Жыл бұрын
Yes, you are correct
@MrLeyt11258 ай бұрын
Its better to use next_permutation function from C++. Its easy to write it by yourself in any language. Backtrack solution is too heavy
@shubhambindal7333 Жыл бұрын
Hey @NeetCode would be a issue if we do the following: Its TC is still seems to same as n.n! and SC - n stack = [] set_ = set() output = [] def backTrack(): if len(stack)==len(nums): output.append(list(stack)) return for i in range(len(nums)): if nums[i] not in set_: stack.append(nums[i]) set_.add(nums[i]) backTrack() stack.pop() set_.remove(nums[i]) backTrack() return output
@Tiparium_NMF2 ай бұрын
Why would you have getting the subPermutations in side the first for loop? That seems like a needless performance overhead.
@adrienveidt82733 жыл бұрын
why not just return [[nums[0]]] which also work and simpler rather than [nums[:]] ?
@pemessh2 жыл бұрын
Naive question :) Why do we need to return the copy of the nums arrray? Sorry I'm stupid.
@shaksham.227 ай бұрын
In python, a list variable is just a pointer pointing to the memory location where the list is present so if you do list1=list2. both list1 and list2 will be same. so eg:- list1=[1,2,3,4,5] list2=list1 list1.pop() print(list1)=======>[1,2,3,4] print(list2)=======>[1,2,3,4] in python id() will give you the memory location. so if you print(id(list1)) the value will be same as id list2 on other hand copy will do a deepcopy of the list and make it a new list with different pointer. so when passing through return etc, if you try changing things in a return list it will also get changed in the original passed variable unless you copy it.
@amandasun6677 Жыл бұрын
What is the time and space complexity of this solution?
@vinayak63309 ай бұрын
Same underlying login but more understandable code? Any feedback is appreciated. def permute(self, nums: List[int]) -> List[List[int]]: res = [] def dfs(cur, temp): if len(temp) == len(nums): res.append(temp.copy()) return for i in range(len(cur)): temp.append(cur[i]) dfs(cur[:i] + cur[i+1:], temp) temp.pop() dfs(nums, []) return res
@leoadnan3 жыл бұрын
Keep it up. By the way what tool you use for drawing.
@NeetCode3 жыл бұрын
Thanks, I just use Paint3D
@spacepacehut32652 жыл бұрын
Which software you using to draw ?
@lucaswang84572 жыл бұрын
I just got asked this leetcode problem in my today's interview. And I failed. LOL.
@okolichidiebere44562 жыл бұрын
Everyone here has failed many times.. Actually, many * many times.
@bluesteel1 Жыл бұрын
nice video bro .. best explanation
@badguy74327 ай бұрын
5:17 code only gives 1x of undo swap function and you can only access this function once you are done with the recusive calls and has printed the array result of one such permutation, how are you able to go back up more than one iterations above? That's what you need to explain
@ishansharma61982 жыл бұрын
hey, thanks for the video, extremely informed, just wanted to understand why do we append the removed element to the end of the main array and not at the same position?
@shalombentenzingnamchyo93842 жыл бұрын
Its because we are removing the first element every time. Had it been pop(i) then we would have to insert it at the same position. because we must remove every element at least once. Eg. 1,2,3 first call from this will be per(2,3)(we remove the first element then the list will be 2,3,1 and the second call from the loop will be per(3,1). After that the list will be 3,1,2 and per(1,2) will be called.
@fahimmahmood8967 Жыл бұрын
Why do I get "RecursionError: maximum recursion depth exceeded while calling a Python object" error when I use "return [nums]" instead of "return [nums[:]]"?
@ogoubah3 жыл бұрын
What's the time complexity?
@boomboom-jj9jo2 жыл бұрын
simply a wonderful solution
@frankdeng8 Жыл бұрын
pop(0) complexity is O(N), you might want to avoid it
@sakshamgupta57262 жыл бұрын
How to do it lexicographically without using internal function for permutations (from itertools)?
@infiniteloop5449 Жыл бұрын
This solution doesn't use itertools....
@mirceskiandrej2 жыл бұрын
Am I missing something or is the image at 6:00 not showing what the code is doing? first we have [1,2,3], we pop 1 and permute [2,3] and put 1 at the end. then we have [2,3,1], we pop 2, permute [3,1] and put 2 at the end. but the image is showing that we permute [1,3], not [3,1]. Right? Backtracking is counterintuitive for me so I may be wrong here, but having the image follow the code may help make it easier. great work though!