Banach Spaces part 1

  Рет қаралды 103,032

DTUdk

DTUdk

Күн бұрын

Пікірлер: 55
@maitrelame2
@maitrelame2 8 жыл бұрын
This lecture series saved my life, I was so confused you made everything clear, thank you professor!
@michaelli8523
@michaelli8523 3 жыл бұрын
Max, can you tell me how I can find other lectures? I don't know in what playlist this lecture lies. Also, what are the name of the series and the reference book? Thanks!
@TheTacticalDood
@TheTacticalDood Жыл бұрын
@@michaelli8523 kzbin.info/aero/PLMn2aW3wpAtOqo0g0OnHndXB1LnYBeMaX
@waytolearn7893
@waytolearn7893 3 ай бұрын
@@michaelli8523 kzbin.info/aero/PLMn2aW3wpAtOqo0g0OnHndXB1LnYBeMaX And the name of the book of this course is "Functions, Spaces and Expansions" by Ole Christensen
@tejasnatu90
@tejasnatu90 8 жыл бұрын
It's a good lecture series for specially those who have studied rather pure functional analysis and now wanna look at concrete applications..
@Mulkek
@Mulkek 2 жыл бұрын
Thanks, and explain so clearly!
@TheMagic0wnz
@TheMagic0wnz 4 жыл бұрын
Excellent lecture. Very clear, even I can understand!
@matron9936
@matron9936 4 жыл бұрын
Thank you! Amazing lecture on this topic.
@jehushaphat
@jehushaphat 3 жыл бұрын
Captain Picard is a great teacher.
@oryana2023
@oryana2023 4 жыл бұрын
Great professor.Thanks
@mithatkursatkaplan7095
@mithatkursatkaplan7095 4 жыл бұрын
I learned all the necessary information.Thank u so much :)
@_rachid
@_rachid 8 жыл бұрын
Gorgeous lecturer ! thank you !
@ghazalfaris8796
@ghazalfaris8796 2 жыл бұрын
If u cannot guess what v should be in [v - v] 11:28 In many cases banach spaces we want exactly opposite not always 17:43 banach with a simple norm [don't do that now] Some function sitting in the space F - fk =0 at inf Now it's functions and functions 26:07 it's less than epsilon 33:41 infinity norm = max[]
@Artus506
@Artus506 11 жыл бұрын
Thank you so much. The lecture is very clear.
@Carolchan09
@Carolchan09 10 жыл бұрын
very nice lecture! I hope I can have a lecturer like this!!!
@YuanwenHuang
@YuanwenHuang 11 жыл бұрын
yeap, very good video, very good instructor!
@Ahidousmoderne
@Ahidousmoderne 4 жыл бұрын
I have a licence mathématiques appliquées in morocco we study this lesson and also Complet Space , helbirt Space...etc Banach Space = espace vectoriel normé complet.
@amalulaji2171
@amalulaji2171 11 жыл бұрын
Thank you Sir.
@nirmalduari2098
@nirmalduari2098 5 жыл бұрын
Hi
@hamzahussain3448
@hamzahussain3448 4 жыл бұрын
Fantastic ❤
@mikecohen5887
@mikecohen5887 11 жыл бұрын
excellent; thank-you. A minor point: < means less than not more.
@thanhbmttcnh
@thanhbmttcnh 11 жыл бұрын
Thank you so much!
@jppereyra
@jppereyra 10 жыл бұрын
Fantastic Mr Ore is the best ever lecturer I have saw so far, is any long distant subjects for postgraduate students in the University he teach?
@bierthai4436
@bierthai4436 8 жыл бұрын
thank to such a good teaching video
@zapazap
@zapazap 2 жыл бұрын
So is a lecture recapitulating the notion of a Cauchy sequence from one's first analysis course to be expected in all later analysis courses?
@johnmaina1113
@johnmaina1113 9 жыл бұрын
nicei have learnt alot
@shorab9856
@shorab9856 9 жыл бұрын
i really liked lecture
@ermenleu
@ermenleu 4 жыл бұрын
@ 36:35 Imagine this man could have been a useful window washer ... ; )
@jehushaphat
@jehushaphat 3 жыл бұрын
lol
@klausmathauer3316
@klausmathauer3316 9 жыл бұрын
Thank you :)
@yavarjn2055
@yavarjn2055 2 жыл бұрын
Which is the book he refers to?
@thepacifier3267
@thepacifier3267 8 жыл бұрын
Where/How can we get the solution manual for his book? There are good questions at the end of the chapters.
@rainbow-kj3ks
@rainbow-kj3ks 7 жыл бұрын
Thank you a lot
@mohanakrishnans2791
@mohanakrishnans2791 10 жыл бұрын
thanks sir....
@gbennardo
@gbennardo 11 жыл бұрын
Thanks
@Circuito28
@Circuito28 4 жыл бұрын
Is it possible to know from which book this lecture is from or which is the text used during this course? Also which course is this? In Italy Banach spaces are teached during Analisi matematica 3 which corresponds to calculus in English; is it the same in other countries?
@franzarviclivia1551
@franzarviclivia1551 10 жыл бұрын
f in C[a b] ...What's book? (Th. 1.6.6)
@InCog2020
@InCog2020 11 жыл бұрын
I had John Searle in university and he'd do the same thing except instead of blackboards they were books which we were required to buy. The books were his lectures practically verbatim. You'd think the guy in the video would save himself some trouble and effort and print that which he is writing and hand it out.
@khadimsarr581
@khadimsarr581 6 жыл бұрын
Thanks you very much we have understook banach spaces thank to you I am in licence of mathematic that's why it very good for us if i have a advice to give that's keep going to put these view we are everything with you thankkkkkkkkkkkkkkkkkkkkkkkk
@RAMPAL-zi5mm
@RAMPAL-zi5mm 4 жыл бұрын
Better explain
@kparag01
@kparag01 10 жыл бұрын
What are prerequisites for this class?
@ottowagner6008
@ottowagner6008 10 жыл бұрын
You can get through this with Linear Algebra and Calculus
@Easyprogrammingjai
@Easyprogrammingjai 7 жыл бұрын
Good
@whispererL
@whispererL 11 жыл бұрын
which level is this ?
@leewilliam3417
@leewilliam3417 Жыл бұрын
Mmmmn😊
@mikecohen5887
@mikecohen5887 11 жыл бұрын
Sorry, you said "smaller" not "more than"
@pedroduarte6672
@pedroduarte6672 7 жыл бұрын
The lecture seems to be elementary but instructive and very intuitive. This lecture does not seem to be very mathematical rigorous. Could someone tell me if this lecture is as mathematical rigorous as graduate mathematics lecture for mathematicians or is more like for physicists?
@ene4s
@ene4s 7 жыл бұрын
I had the same doubt. DTU (Danmarks Tekniske Universitet) is a technical university and think this course is oriented to engineers or physicist ( form my experience with undergraduate physics the same level of math that in Germany or Spain). In fact the only undergraduate program in English in this university is BSc in General Engineering
@pedroduarte6672
@pedroduarte6672 7 жыл бұрын
Thanks!
@DarthChrisB
@DarthChrisB 9 жыл бұрын
32:38 That's just plain wrong! It's the opposite: You get a different N for (almost) every x you choose. It's easy to show this: if the function fl(x) isn't a constant and fl(x) isn't f(x)+c, then you get different values for different x. There can be values for x so that the absolute difference is bigger than epsilon and N must be chosen larger. This proof is invalid, but it's easy to correct it: Of all the different N for different x one has to choose the biggest N.
@AlqGo
@AlqGo 9 жыл бұрын
+DarthChrisB No, it's not wrong, because the indices k and l refer to two different functions in the Cauchy sequence; they do NOT point to some values of the functions at some arbitrary x in [a,b]. See the difference? So, when he lets the index k approach positive infinity, he's picking the limit of the sequence {f_k}, which is a function, and NOT a specific value of that function evaluated at some arbitrary x!
@longle863
@longle863 5 жыл бұрын
+DarthChrisB How can you pick the "largest" N? What if the sequence n(x) (as you said, with different x we can potentially has different n) is unbounded like the sequence 1, 2, 3, 4, ... ? +hmmm, you said that "when he lets the index k approach positive infinity, he's picking the limit of the sequence {f_k}, which is a function", I don't think this is a valid argument. Remember that we are trying to show that {f_k} converges to some function in the first place! Thus, we cannot just assume that {f_k} converges to some function (it'd be circular proof then...). I think the proof should have been something like this. Fix f_k such that |f_k - f_l | < epsilon/2 for all l > k (*). Then, I claim that |f_k - f| < epsilon. Why? For contradiction, let say I can choose x such that |f_k(x) - f(x) | > epsilon. Then , because of (*), we know that | f_l(x) - f(x) | > epsilon (If you like, draw a picture and consider two cases when f(x) > f_k(x) and f_k(x) > f(x) ). But this is a contradiction of our construction that f(x) = lim f_l(x).
@avarmaavarma
@avarmaavarma 11 жыл бұрын
These lectures are no different from textbook definitions. KZbin videos - I was expecting better explanations. Plus , writing out every spoken word is annoying ( I know he has multiple blackboards )
@geethatelgani2203
@geethatelgani2203 6 жыл бұрын
Thank u sir....
Banach Spaces part 2
52:21
DTUdk
Рет қаралды 29 М.
Normed Vector Spaces Part 2
51:37
DTUdk
Рет қаралды 30 М.
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 90 МЛН
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 163 МЛН
Hilbert Spaces part 2
55:55
DTUdk
Рет қаралды 37 М.
Hilbert Spaces part 1
50:18
DTUdk
Рет қаралды 103 М.
Euler's Identity (Complex Numbers)
13:32
Mark Newman
Рет қаралды 1,7 МЛН
Walter B. Rudin: "Set Theory: An Offspring of Analysis"
1:00:00
UW-Milwaukee Department of Mathematical Sciences
Рет қаралды 139 М.
Normed Vector Spaces Part 1
51:54
DTUdk
Рет қаралды 114 М.
What's a Hilbert space? A visual introduction
6:10
Physics Duck
Рет қаралды 68 М.
More On Lp And L2 Spaces Part 1
48:00
DTUdk
Рет қаралды 21 М.
Approximation Theory Part 1
48:32
DTUdk
Рет қаралды 25 М.
Functional Analysis 6 | Norms and Banach Spaces
7:57
The Bright Side of Mathematics
Рет қаралды 83 М.