Basis vectors and the metric tensor

  Рет қаралды 44,822

Tensor Calculus - Robert Davie

Tensor Calculus - Robert Davie

Күн бұрын

Пікірлер: 54
@scottydscottd
@scottydscottd 6 жыл бұрын
Hell yesss. Clearest and most logical exposition on KZbin. Reasonable definitions, etc. This is a gold mine. Thank you!
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 6 жыл бұрын
Thanks for your comment. Much appreciated!
@abcdef-ys1sb
@abcdef-ys1sb 6 жыл бұрын
I was looking for this kind of explanation for a long time
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 6 жыл бұрын
Thank you for your comment.
@logansimon6653
@logansimon6653 4 жыл бұрын
Honestly, a very competent run through. Thanks!
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 4 жыл бұрын
Hello Logan and thank you for your comment. Much appreciated!
@logansimon6653
@logansimon6653 4 жыл бұрын
@@TensorCalculusRobertDavie Hi, you are very welcome. I browsed through some of your other titles just now, and I am excited to see a rich source of mathematics of my most favorite type. Would you mind if I cite you as a source in the text I am writing on general relativity (with a rigour in tensor calculus and differential/Riemannian geometry) -- especially for any instances that I am inspired to add to my work because of your content? If you would like, this is a hyperlink to my document. drive.google.com/open?id=1-MU7daeZ0Q8TefNOwzImcGD2uZIhktvZl3FO13R5UkQ Thank you for the content!
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 4 жыл бұрын
You are welcome to cite my material andgood luck with your efforts.
@marinajacobo3550
@marinajacobo3550 5 жыл бұрын
Thank you Robert! I really enjoyed this video.
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 5 жыл бұрын
Hello Marina and thank you for your comment. Much appreciated.
@marinajacobo3550
@marinajacobo3550 5 жыл бұрын
Thank you! I really enjoyed this explanation :)
@g3452sgp
@g3452sgp 7 жыл бұрын
The images at 1:59 and at 3:20 are good. They are well organized and help us to get the whole picture of underlying concept. Excellent! Thanks a lot.
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 7 жыл бұрын
Thank you again!
@davidprice1875
@davidprice1875 7 жыл бұрын
Very clear and precise summary.
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 7 жыл бұрын
Thank you David.
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 7 жыл бұрын
Hello Sjaak, the content covered here does assume some prior knowledge of vector calculus. The main point of the video are the two forms of basis vectors that can be formed so could I suggest that a good starting point would be to focus on the meaning of the diagrams before moving on to deal with the notation and what it is trying to express. Hope that helps?
@theboombody
@theboombody 3 жыл бұрын
I like the ad placements on these videos. "Are you struggling with calculus?" If you're watching a video on curvature and differential geometry, then no, you're not struggling with calculus. You're struggling with something far beyond.
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 3 жыл бұрын
Yes, a bit ironic. I hope there aren't too many ads?
@theboombody
@theboombody 3 жыл бұрын
@@TensorCalculusRobertDavie No, it's not too bad. That's the price of posting stuff on youtube. They can put ads in your stuff and there's nothing you can do about it except not post videos. But I think it's a small price to pay for the freedom of being able to post mathematical content. I'm pretty grateful for youtube both as a viewer and as a poster.
@dansaunders6957
@dansaunders6957 4 жыл бұрын
What happens to the position vector when working with a manifold? how does one typically define a basis without a position vector.
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 4 жыл бұрын
Please have a look at the first few minutes of this video.
@한두혁
@한두혁 3 жыл бұрын
Is linear algebra needed (I mean in a rigorous way starting from defining vector spaces and dual spaces and so on...) to fully understand Tensor and General Relativity? Because some Textbooks were pretty hard to read since they start from a very abstract point of view not even mentioning about differentials, chain rules from calculus. I really enjoyed the video by the way I really appreciate it. Thank you!
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 3 жыл бұрын
Hello and thank you for your comment. The answer is no because this video provides you with a basic introduction to basis vectors and one forms (the objects with raised indices). However, the more you learn the better so do continue to study linear algebra if you can. Thank you for the feedback and good luck with your studies.
@한두혁
@한두혁 3 жыл бұрын
@@TensorCalculusRobertDavie Thankyou!
@hariacharya5533
@hariacharya5533 6 жыл бұрын
good presentation. you explain nicely.
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 6 жыл бұрын
Thank you.
@benedekjotu266
@benedekjotu266 5 жыл бұрын
Excellent presentation. In general, what is the punch line for working with both covariant and contravariant coordinates? They are both representing the same objects. The metric tensor is usually at hand anyways. At first it seems an unnecessary complication while on the way to general relativity. How come they didn't just go with one or the other? And left the other as a fun fact side note. Thanks
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 5 жыл бұрын
Hello Benedek and thank you for your question. Wikipedia discusses this issue in the quote below and further in the link below that. "The vector is called covariant or contravariant depending on how the transformation of the vector's components is related to the transformation of coordinates. Contravariant vectors are "regular vectors" with units of distance (such as a displacement) or distance times some other unit (such as velocity or acceleration). For example, in changing units from meters to millimeters, a displacement of 1 m becomes 1000 mm. Covariant vectors, on the other hand, have units of one-over-distance (typically such as gradient). For example, in changing again from meters to millimeters, a gradient of 1 K/m becomes 0.001 K/mm." www.wikiwand.com/en/Covariance_and_contravariance_of_vectors
@dsaun777
@dsaun777 5 жыл бұрын
@@TensorCalculusRobertDavie So it doesnt matter if you use contravariant or covariant they are just used whenever most conveniently for transforms?
@parthvarasani495
@parthvarasani495 5 ай бұрын
12:24 , u • v = g(ij) ui vj , not square root of it. I think.(In Numerator)
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 5 ай бұрын
You are right. Thank you for spotting that.
@parthvarasani495
@parthvarasani495 5 ай бұрын
@@TensorCalculusRobertDavie Thank you for your all efforts, highly appreciated 👍👏👏
@garytzehaylau9432
@garytzehaylau9432 5 жыл бұрын
Excuse me What is Nable i u in 12:53 actually this notation is not clear why g^ij Nablaj u ej = n could you explain to me thank for your great videos i would recommand to other people
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 4 жыл бұрын
Hello Gary and thank you for your question. The inverse metric is the g^ij part and the nabla u is the derivative giving us the maximum direction of increase in the scalar u in each of the directions j. The inverse metric raises the j index on the resultant of nabla u so that we obey the Einstein summation convention and don't end up with two j's down below. We CANNOT have (nabla u)j e_j but we can and must have (nabla u)^j e_j. Hope that helps?
@vicentematricardi3596
@vicentematricardi3596 6 жыл бұрын
Muy Buenos sus Videos !!!!!
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 6 жыл бұрын
Vicente Matricardi Muchos gracias.
@vicentematricardi3596
@vicentematricardi3596 6 жыл бұрын
Gracias a usted por generar y divulgar tan buena calidad de informacion , le escribo en español por que me agrada que sepa que a mucha gente le interesan estos temas , un saludo !!!!
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 6 жыл бұрын
Vicente Matricardi Thanks Vicente.
@vicentematricardi3596
@vicentematricardi3596 6 жыл бұрын
Thanks, Robert Davie
@nicolecui3214
@nicolecui3214 4 жыл бұрын
Hi, thanks for the video, but why does every vector is written by a covariant component with contravarient basis, and vice versa. Intuitively, I thought isn't the component and basis are consistent?
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 4 жыл бұрын
The two bases are distinct, hence the upper and lower indexes, and behave in different ways unlike in Euclidean space where they really are just the same thing hence no reason to raise or lower indices. Sorry for the short answer. Have a look at this article; en.wikipedia.org/wiki/Covariance_and_contravariance_of_vectors and this video; kzbin.info/www/bejne/eZ3MiGqhiN2rjbc In General Relativity we use a metric to raise and lower these indices that is not the same as the Euclidean metric.
@nicolecui3214
@nicolecui3214 4 жыл бұрын
@@TensorCalculusRobertDavie Thank you for the reply, will take a look! :)
@박용석-n8y
@박용석-n8y 4 жыл бұрын
5:12 thank you so much
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 4 жыл бұрын
You're welcome!
@rontoolsie
@rontoolsie 7 жыл бұрын
At 11:45, line 3 should end up as u(covariant)V(contravariant). Otherwise this is an excellent presentation.
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 7 жыл бұрын
Hello Ron, thank you for your comment and you are correct however, in this case, we have u(covariant)v(contravariant) = u(contravariant)v(covariant) which was the point I was trying to show across lines 3 and 4. The point here is that there are four different looking ways to get the same result. At the time I did um and arrgh about whether I should write it in the form you have pointed out but my goal took precedence in the end.
@abhishekrai1204
@abhishekrai1204 5 жыл бұрын
Thanks sir
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 5 жыл бұрын
You're welcome.
@zoltankurti
@zoltankurti 6 жыл бұрын
At the beginning of the video, you have to assume that the coordinate transformation and its inverse is also differentiable
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 6 жыл бұрын
Thank you Zoltan, that is a good point about differentiability, I should have mentioned it at the beginning.
@anthonysegers01
@anthonysegers01 6 жыл бұрын
GREAT JOB!!! (
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 6 жыл бұрын
Thank you Anthony.
@rontoolsie
@rontoolsie 7 жыл бұрын
correction...line 4
@TensorCalculusRobertDavie
@TensorCalculusRobertDavie 9 ай бұрын
Which slide?
Orthonormal basis vectors
10:41
Tensor Calculus - Robert Davie
Рет қаралды 2,9 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
The Metric Tensor: Introduction and Examples
11:48
Faculty of Khan
Рет қаралды 6 М.
Demystifying The Metric Tensor in General Relativity
14:29
Dialect
Рет қаралды 350 М.
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 156 М.
Tensor Calculus For Physics Ep. 12: Christoffel Symbols
17:06
Andrew Dotson
Рет қаралды 48 М.
The Meaning of the Metric Tensor
19:22
Dialect
Рет қаралды 226 М.
Tensors Explained Intuitively: Covariant, Contravariant, Rank
11:44
Physics Videos by Eugene Khutoryansky
Рет қаралды 1,1 МЛН
Mathematics doesn't actually make any sense
13:37
Sheafification of G
Рет қаралды 35 М.
Classroom Aid - Riemannian Curvature Tensor xx
6:08
David Butler
Рет қаралды 42 М.
What's a Tensor?
12:21
Dan Fleisch
Рет қаралды 3,7 МЛН
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН