i recently received my graade on differential equations and i got 45/45 thanks to Patrick!!
@MuksEmmaN2 жыл бұрын
"If you want to see examples of me flying through this stuff". When I grow up I want to have this much confidence :)
@mar56cos7 жыл бұрын
I see you have no regards for your own safety by using a permanent marker to do math. = Thug Life!
@TheUberPeople8 жыл бұрын
i have a test on this tomorrow, great timing!
@patrickjmt8 жыл бұрын
follow up video will available a bit later today
@jolinchua20118 жыл бұрын
me too !! :)
@elifarley24797 жыл бұрын
It's almost exactly a year later, and I am in the same boat. Test tomorrow and this video saves my neck. I wonder if this video's view count will spike 5 weeks into every semester due to the common schedule Diff EQ classes tend to follow.
@Gataroes7 жыл бұрын
It's almost 3 months later and I am in the same boat. Test tomorrow and this video saved my neck.
@supreme_keor6 жыл бұрын
got a test later, this saves my neck
@theultimatereductionist75927 жыл бұрын
Since learning about the Bernoulli differential equation in the 1980s, I find it's so subtle & amazing & deep why we can solve y'=A(t)*y+B(t)*y^n for any (complex) number n, but not y'=A(t)+B(t)*y^n when n is not 0, 1 or 2 (n=3 is sometimes called the Abel equation).
@cierramunguia14168 жыл бұрын
I'm glad you decided to do a derivation video and a example problems video!
@Bayonettamachinekill2 жыл бұрын
It’s incredible how the first program created by Ada Lovelace was all done with Bernoulli equations. Thank you Ada and Charles for inventing the computer.
@ReWolWerKillZ8 жыл бұрын
wow i just realised you've never posted this type of D.E. until now. Perfect timing. Differential Equations class just started for everyone in college right now.
@michaelm65972 жыл бұрын
Your videos are amazing and makes this so much more understandable than in class.
@franpolyphemus44964 жыл бұрын
You're a godsend and a lifesaver. Thank you so much for this!
@coleforbes54437 жыл бұрын
Patrick, you have gotten me through calculus. Thanks a lot!
@TheUberPeople8 жыл бұрын
You should cover the Ricatti equation too!
@patrickjmt8 жыл бұрын
ok, will take a look at it as well
@Mathemusician978 жыл бұрын
I literally just had a test with Bernoulli equations yesterday.
@steartfires30397 жыл бұрын
Brilliant explanation, thanks. That Leibniz was on another level.
@fredydeekrueger1696 жыл бұрын
Damn, that sharpie gives me the chills. Great video either way!
@DehviLz5 жыл бұрын
This man the reason I passed my class
@mmmchestnut40858 жыл бұрын
odd that I started this really just this week
@ShInInGReNaGaDe8 жыл бұрын
Patrick. Thank you.
@patrickjmt8 жыл бұрын
+ShInInGReNaGaDe you are very welcome :)
@alanwrigglesworth75628 жыл бұрын
I was wondering if you could do a series on stochastic differential equation. can't find any good videos on it
@INdoFreakNesian6 жыл бұрын
great video!
@robertbrandywine6 жыл бұрын
Can you use a large whiteboard so that we can see more around what you are doing at one time?
@kimberlycenbasto73538 жыл бұрын
thanks your videos are so helpful 🙂
@JamesSmith-gq7ru8 жыл бұрын
Just in time for exams !
@Docweed137 жыл бұрын
Correct me if I am wrong, you are right 98% of the derivation. The problem I see is there should be a negative in front of the a(t) value as the general form is dy/dt + p(t)y = q(t)y^n. Thus your proof would result in dy/dt = - p(t)y + q(t)y^n. Again please advise.
@MadJDMTurboBoost7 жыл бұрын
He said suppose you have an equation, y' = a(t)y + f(t)y^n This is an example, and is not derived from the general form equation he had a bit before. It seems confusing but think of it as if the general form is as you wrote it, i.e. dy/dt + p(t)y = q(t)y^n; where a(t) = -p(t), and f(t) = q(t).
@srinivasanbalan24695 жыл бұрын
Hi Patrick, how will I solve the diff equation of the following format. y'(t) = y + f(t) y^n + g(t). Your solution is highly appreciated.
@fullthrottle2548 жыл бұрын
THANK YOU PATRICK!!
@luigiinfanzon21998 жыл бұрын
Is that you Patrick?
@patrickjmt8 жыл бұрын
i think so
@luigiinfanzon21998 жыл бұрын
I've been watching your videos for a while now but for some odd reason I felt like your voice sounded a bit different on this video, I guess because it's a 2016 video. Nice ring btw, but anyway, I want to take the time to thank you for all the help you have provided all of us throughout the years.
@rachelilevine16196 жыл бұрын
No, its the Crusty Crab
@jammcrusader19814 жыл бұрын
@@luigiinfanzon2199 i agree he def sounds different here haha
@jammcrusader19814 жыл бұрын
@@luigiinfanzon2199 i thought he sounded different too! but the leftie
@hari85688 жыл бұрын
Patrick I hope u remember a request when i asked if u could possibly analyze few iit mains or advanced papers in maybe ur upcoming videos.a reply would be appreciated.btw this video was very helpful👍
@yarashamali80617 жыл бұрын
i dont get it .. why are the videos in this playlist not in order
@TheTruthseeker7078 жыл бұрын
funny as how I started learning this today in class. Is patrickjmt psychic?
@christiantabalanza45185 жыл бұрын
Timing pre-final pa naman sa sabado😘😉
@jp55683 жыл бұрын
FANTASTIC
@carloschuecos70147 жыл бұрын
Patrick, could you tell me how I could solve this diff eq: dy/dx-4xy=4. If I treat it as a linear equation and apply the integrating factor this comes up with the integral of e^(-2x^2) which solution leads me to think that I am doing something wrong. I would appreciate any suggestion from you. Thanks
@theultimatereductionist75927 жыл бұрын
Correct. The final solution is y = exp(2*x^2)*( y(0) +4*integral of exp(-2t^2)*dt from t=x(0) to x). Theorems imply this integral has no elementary solutions in terms of finite compositions of trigonometric functions and exponentials. But, you can always write exp(-2*t^2)= infinite sum of (-2t^2)^n/n! from n=0 to infinity and integrate termwise to get ((-2)^n)*(t^(2n+1))/((2*n+1)*n!) evaluated from t=x upper limit minus t=x(0) lower limit.
@carloschuecos70147 жыл бұрын
Thank you Patric for your answer. You do not know how I appreciate your time giving me your professional solution.
@narutouchiha19465 жыл бұрын
the GOAT
@harveyarizala78297 жыл бұрын
Is that equation z'=(1-n)a(t)z + (1-n)f(t) applicable to any Bernoulli form question?
@HemAWahEdBas6 жыл бұрын
I have a test on that tomorrow Wish me luck guys xP
@sandeepbhuiya296 жыл бұрын
All the worst
@prateeksenapati21527 жыл бұрын
Thank you Patrick!!!!!!
@patrickjmt7 жыл бұрын
you are very welcome Prateek!
@fauzansyauqi28154 жыл бұрын
Fucking THANKS YOU SO MUCH OMFG DUNNO HOW TO SAY MORE ❤❤❤❤
@clowheeler8 жыл бұрын
thank you!
@patrickjmt8 жыл бұрын
+carolyn wheeler no problem!
@chenevan85645 жыл бұрын
but if n=0or1 ,how to do it?
@malkhaz.jokhadze8 жыл бұрын
Liouville equation next please
@patrickjmt8 жыл бұрын
+Malkhaz Jokhadze ok
@malkhaz.jokhadze8 жыл бұрын
What about this?
@abdulwahabmuhammad76684 жыл бұрын
هل يوجد مترجم
@Mohammed_Angler8 жыл бұрын
great video
@Misada6784 жыл бұрын
THANK YOU SO MUUUUUUUUUCH AAAAAAAAAAAAAAA
@cinbeats21126 жыл бұрын
Mat225 sınavına 3 saat kaldı :D
@carlosaija68515 жыл бұрын
very helpful
@kapallitrijana31687 жыл бұрын
great thing i will be very thank full to you
@TheChanExperiment8 жыл бұрын
You're amazing
@AnjaliSharma-bk3vt7 жыл бұрын
Nice one
@الحمدللهلاالهإلاالله-ص1و8 жыл бұрын
Thanks dr
@makemarshall70418 жыл бұрын
Thank you
@sonaligupta77195 жыл бұрын
(xy+e^x)ydx-e^xdy=0 how can we solve this question by bernoulli equation?
@muhammad_eng6 жыл бұрын
I have an exam tomorrow ☹️ Pray for me plz💔31/10/2018
@Madridistooota5 жыл бұрын
Good luck 💙
@eunoia65575 жыл бұрын
İs he left handed????
@mevlanisufi21007 жыл бұрын
thanks man
@lysianahwang39696 жыл бұрын
holy using a marker for this video was the worst decision cos of that squeaky noise
@lysianahwang39696 жыл бұрын
nevertheless thanks for the video
@amanbisht97096 жыл бұрын
Hmm.. that's what i looking for.
@erickvillegas83275 жыл бұрын
If we use the second equation: y'+a(t)y=f(t) to make the transformation to variables of z, do we get a negative in the front of (1-n)a(t)z in the z' equation? And if so is it significant?
@zoulikhatebri48596 жыл бұрын
Merci
@madkidjohnny64726 жыл бұрын
Odd way of holding the pen.
@sreeragkr76537 жыл бұрын
thanksss
@james_dinham Жыл бұрын
Your video was very instructive, but every time you write that pen is breaking my ears