BEST OPEN Alternative to OPENAI's EMBEDDINGs for Retrieval QA: LangChain

  Рет қаралды 55,202

Prompt Engineering

Prompt Engineering

Күн бұрын

Пікірлер: 143
@engineerprompt
@engineerprompt Жыл бұрын
Want to connect? 💼Consulting: calendly.com/engineerprompt/consulting-call 🦾 Discord: discord.com/invite/t4eYQRUcXB ☕ Buy me a Coffee: ko-fi.com/promptengineering |🔴 Join Patreon: Patreon.com/PromptEngineering ▶ Subscribe: www.youtube.com/@engineerprompt?sub_confirmation=1
@efexzium
@efexzium Жыл бұрын
what chart software are you using ?
@BamiCake
@BamiCake Жыл бұрын
Really happy with this! I keep asking myself "What is the best alternative for OpenAi?"
@parmesanzero7678
@parmesanzero7678 Жыл бұрын
Your videos are amazing and informative and you are providing so many tools and bits of knowledge to the community. Thank you for being dedicated to open source
@vivekpadman5248
@vivekpadman5248 Жыл бұрын
Finally the video everyone needed
@Allteamcaptain
@Allteamcaptain Жыл бұрын
Looking forward for your next Video (i want to use this with "Wizard-LM13B or Mtb-7b locally" but I'm not able to do that myselve :)) Thank you for you guides
@meinbherpieg4723
@meinbherpieg4723 9 ай бұрын
Amazing video. Thank you so much for being clear, detailed, and holistic.
@rickie_
@rickie_ Жыл бұрын
This is amazing! A completely free open source knowledge engine would be a fantastic goal!
@lbasavaraj
@lbasavaraj Жыл бұрын
Good one man, when’s the next video coming out? Eager to know the model you have chosen to use with this open embedding
@atultiwari88
@atultiwari88 Жыл бұрын
Thank you very much for this video. Early waiting for the next one.
@FBAND-lp6wr
@FBAND-lp6wr 4 ай бұрын
09:16 which tool did you use to draw this illustration?
@syedhabeeb-u8h
@syedhabeeb-u8h 23 күн бұрын
IN above code you have used an open source for emmedings but where you have mentioned devichi module in code it unable to find
@mostlazydisciplinedperson
@mostlazydisciplinedperson Жыл бұрын
Brother i think you left api key inside in colab
@meet_gondaliya
@meet_gondaliya Жыл бұрын
You and your channel is awesome. I want to make just one comment regarding the videos. Please check why the volume is very low. Maybe due to microphone far from the face? Everything else is just next level.
@syedhabeeb-u8h
@syedhabeeb-u8h 23 күн бұрын
IN the above code where there no module has used as divinchi module in that code if you mentoned a module can you show the specific one
@mr2mato
@mr2mato Жыл бұрын
Thanks for your effort.
@cesarv-g1s
@cesarv-g1s 9 ай бұрын
WOW , one question, can we use this code to make a chatbot for android using kivy?
@RonivaldoPassosSampaio
@RonivaldoPassosSampaio Жыл бұрын
The embeddings can be used in other languages, like Portuguese?
@yusufkemaldemir9393
@yusufkemaldemir9393 Жыл бұрын
@Prompt Engineering, for some reason, when using google/flan-t5-xll within this notebook as llm, it does not print the result. It only prints the source for the created query. Is not that supposed to print results for other repos? I am not sure if you have indexed the vector and also printing the results in the notebook
@engineerprompt
@engineerprompt Жыл бұрын
Interesting, it could be that the model is not able to generate the response? Will need to look into it further.
@not_yet_implemented
@not_yet_implemented Жыл бұрын
Good explanation
@RajemaTech_Tamil
@RajemaTech_Tamil Жыл бұрын
Hi , thanks for this!... I want to know how to return output response with the source files name using openai langchain conversational retrieval q&A.
@VastIllumination
@VastIllumination Жыл бұрын
You are amazing, this is beyond helpful. ty
@WinsonDabbles
@WinsonDabbles Жыл бұрын
Excellent video! Try MPT-7B in your next video for open sourced LLMs!
@hazn139
@hazn139 Жыл бұрын
Can it be used with langchain?
@Data145-y7f
@Data145-y7f Жыл бұрын
in place of openAI devinci, which open source model we can use?
@ducdh1210
@ducdh1210 Жыл бұрын
good stuff. Hey, just wonder what diagram software did you use? tks!
@atultiwari88
@atultiwari88 Жыл бұрын
Hi, Thank you for your tutorials. I am following your tutorials for quite some time now. However I am unable to figure out best economic approach for my use case. I want to create a Q & A chatbot on streamlit which answers only my custom single document of about 500 pages. The document is final and won't change. From my understanding so far, I should either choose Langchain or LlamaIndex. But, I will have to use OpenAI api to get best answers, but that API is quite costly for me. So far I have thought of using Chroma for embedding and somhow storing the vectors as pkl or json on streamlit itself for re-use, so I don't have to spend again for vectors/indexing. I don't have enough credits to test different methods myself. Kindly guide me. Thank you.
@JohnJohn-tn3lc
@JohnJohn-tn3lc Жыл бұрын
What is a good way to deal with token limits on large files?
@joeyx4056
@joeyx4056 Жыл бұрын
Can you share the wireframe, please?
@MrGarg10may
@MrGarg10may Жыл бұрын
ERROR: Could not find a version that satisfies the requirement InstrcutorEmbedding (from versions: none)
@johnday2631
@johnday2631 Жыл бұрын
great vid. What is the link to your Excalidraw diagram?
@AyushBansal-d6n
@AyushBansal-d6n Жыл бұрын
is this the best open source embedding available or are there any others that are better than this? Have you tested any others comparing them to this one
@hazn139
@hazn139 Жыл бұрын
Can you guide which is the other option for OpenAI to use while retrieving information.
@denb1568
@denb1568 Жыл бұрын
Is there a way to prompt engineer so that it will not hallucinate answers or make numbers up like that 100$.
@swishrsplitr
@swishrsplitr Жыл бұрын
@Prompt Engineering great video, thanks! Can these embeddings be upserted to pinecone? What dimension needs to be used? Thanks!
@nosult3220
@nosult3220 Жыл бұрын
Im building a website and having alternative is game changer
@ankanroy848
@ankanroy848 Жыл бұрын
Please mention the link of the video where you have mentioned using open source llm model
@engineerprompt
@engineerprompt Жыл бұрын
Checkout my localgpt project. That combines everything into a single project
@Cedric_0
@Cedric_0 11 ай бұрын
I want to use jina embedding locally which has 8k sequence, how can I do that , thanks
@alizhadigerov9599
@alizhadigerov9599 Жыл бұрын
what about speed? Are opensource self-hosted models faster? Considering I don't have a gpu
@maiconsimioni
@maiconsimioni Жыл бұрын
Good morning. What presentation tool did you use?
@engineerprompt
@engineerprompt Жыл бұрын
I am using excalidraw.com/ for flow-chart.
@saswatmishra1256
@saswatmishra1256 Жыл бұрын
Did you make a video on using a open source LLM instead of openai? BTW great content!
@stlo0309
@stlo0309 Жыл бұрын
@engineerprompt where is the tutorial for opensource alternative for openAI that you used in this video?
@engineerprompt
@engineerprompt Жыл бұрын
Check out the videos on local gpt project. There I put together everything
@weigthcut
@weigthcut Жыл бұрын
Hey there, thanks for the video! Does this embedding model support different languages (in the paper they say its only trained on english data)? Also, where can I find the video where you explain how to use a open source LLM instead of davinci?
@lonebadatel
@lonebadatel Жыл бұрын
how to reference file name while querying in langchain?
@mcs042652
@mcs042652 Жыл бұрын
Thanks for your tutorial. In my case(2 large PDF files( 32 Mb & 54 Mb), One thing I wanted to highlight is that there is a significant difference in embedding size between instructor embeddings and OpenAI embeddings(4.6 Gb vs 13 Mb). Can you please share your thoughts on the same?
@arthurperini
@arthurperini Жыл бұрын
great! Can I use ChatOpenAI LLM? because I'm working on my personal assistant with Tools , like Zapier and Search. Would you have some advice Could I use my LangChain Agent also with Embeddings ? I just wonder do only one app/chatbot
@engineerprompt
@engineerprompt Жыл бұрын
Yes, you can do that.
@VarshaMydhili
@VarshaMydhili Жыл бұрын
Hello.. I'm getting directory error: it says " faiss_instructEmbeddings.pkl' "..This file is not with me...Could please help.
@divyasingh3856
@divyasingh3856 Жыл бұрын
Can we prepare the embedding using cuda machine and then do the inference/QnA on a CPU machine ?
@engineerprompt
@engineerprompt Жыл бұрын
That is possible to do
@yusufkemaldemir9393
@yusufkemaldemir9393 Жыл бұрын
Referring to your previous video about URL information retrieval using Langchain. I tried text, csv, dpf sources. I can tell you that answers are not close to real ones. More importantly, for pdf, Langchain only allowed 3 pdf to be uploaded. It does not let more than 3 pdf. I checked Ghost, and could not read more than 3 pdf. Is there any way that you can read long pdf documents with unlimited number in LLM? Do you mind giving some video about Longformer using checkpoints.
@engineerprompt
@engineerprompt Жыл бұрын
I wasn't aware that there is a limit on the number of pdf files you can read in langchain. Thanks for pointing it out. Will look into it. Will experiment with it and hopefully will find a solution.
@yusufkemaldemir9393
@yusufkemaldemir9393 Жыл бұрын
@@engineerprompt PyPDFloader did the trick.
@harshal6428
@harshal6428 11 ай бұрын
@engineerprompt Great video, Does the retriever "rank" the relevant documents? or do we need to add a ranking model
@engineerprompt
@engineerprompt 11 ай бұрын
This one doesn't. You will need to add that as a secondary layer. Look into Cohere reranker or ColBERT.
@ozzy1987mr
@ozzy1987mr Жыл бұрын
a la espera del próximo video
@georgekokkinakis7288
@georgekokkinakis7288 Жыл бұрын
Great video, thank you. What about documents which contain math expressions and definitions? I haven't seen any related video about mathematical corpus. Also would you answer if we can use the embeddings for documents written in Greek language?
@engineerprompt
@engineerprompt Жыл бұрын
Thanks, I am not sure if it will be able to process math expression. May be if they are provided in Latex or mark-down, you would train a model. But not sure. As for the documents in Greek, I am not sure, haven't experimented with any other language and there is nothing in the documentation that I could find.
@georgekokkinakis7288
@georgekokkinakis7288 Жыл бұрын
​@@engineerprompt Thanks for you response. Unfortunately although I have searched a lot on the web I cant find a test case where someone uses a multilingual model for the embeddings and for the Language model. Although I have noticed that chatGPT understands prompts in the Greek language and also generates replies in the same language. Do you know perhaps how it does that? Does it use a translation model on the backend?
@interspacer4277
@interspacer4277 Жыл бұрын
Embeddings are just the beginning. We'll need to start integrating Llama index (could do a video on that?), which is also "open." It takes vector DB+langchain and supercharges things.
@engineerprompt
@engineerprompt Жыл бұрын
Yes, looking into Llambdaindex.
@massibob2004
@massibob2004 Жыл бұрын
what's the difference with embeddings ? quality ? speed ? cost ?
@interspacer4277
@interspacer4277 Жыл бұрын
@@massibob2004 Embeddings create vector databases the the model uses to quickly find information you're querying about in a given dataset... then the relevant data is chunked and prompted into the AI. Llama index utilizes/integrates this, but is also uses other data structures (like adding metadata) to help parse and find the information. Essentially more of an old-school index/catalog mixed with a vector database. This allows you to "tree" the pipeline; working on certain chunks only, breaking those chunks up even more, etc. Right now, generally folk are vectorizing and chunking say 1000 tokens worth of stuff when only 100 tokens of relevant info is in there... which isn't an efficient use of compute, and can also cause missing data.
@SMCGPRA
@SMCGPRA Жыл бұрын
What is the tool used for your presentation
@engineerprompt
@engineerprompt Жыл бұрын
It's called excalidraw.com
@PleaseOpenSourceAI
@PleaseOpenSourceAI Жыл бұрын
I wonder how big of a text can be turned into embeddings without "losing the sense" of what's written in it.
@dimitriosvlamis8696
@dimitriosvlamis8696 Жыл бұрын
There is some techniques to compensate for that. You can chunk the text into overlapping text embeddings and also you can index them. You can then say that the specified indexed range of embeddings is part of a whole document for example and use all the overlapping chunks to make sense of the whole text as well as individual pieces of the text.
@greendsnow
@greendsnow Жыл бұрын
Is that good for languages other than English?
@abdulrehmanbaber2104
@abdulrehmanbaber2104 Жыл бұрын
you are awesome. like batman
@MrThinlySliced
@MrThinlySliced Жыл бұрын
Thank you for the video. Gentle nudge, ask an AI "How to set up a compressor to get good even spoken audio at a stable level without having background noise rise during silence" .-)
@loicbaconnier9150
@loicbaconnier9150 Жыл бұрын
Awasome video :)
@tusharkhatri5795
@tusharkhatri5795 Жыл бұрын
One quick question i have can we use hugging face instructor embedding with gpt 3.5 turbo model i have doubt like model was trained on open ai embedding but can we use hugging face instructor embedding please clearify?
@tusharkhatri5795
@tusharkhatri5795 Жыл бұрын
Please help me out as i have seen some videos which have used local embedding with gpt 3.5 turbo model how its possible? Like gpt 3.5 turbo is linked with open ai embedding how we can use hugging face instruct embedding on that
@BamiCake
@BamiCake Жыл бұрын
Could you share the flow diagram too? 😊
@engineerprompt
@engineerprompt Жыл бұрын
😊
@maged_helmy
@maged_helmy Жыл бұрын
@@engineerprompt hi :) could you please share the diagram? :)
@subhajitmondal8910
@subhajitmondal8910 4 ай бұрын
@@engineerprompt Can you pls share the diagram ?
@rustin3255
@rustin3255 Жыл бұрын
Anyone know the difference between a semantic index and a vector store?
@yusufkemaldemir9393
@yusufkemaldemir9393 Жыл бұрын
@Prompt Engineering, you have left your Open API Key visible in your colab notebook. you may want to censor it....
@engineerprompt
@engineerprompt Жыл бұрын
Thanks for pointing out, somehow forgot it again.
@arjunob
@arjunob Жыл бұрын
The video content is amazing!👍I have a feedback on the video display quality though. It seems the screen/video recording software is recording with lower quality therefore the texts in the video is not very crystal clear. Would be great if you could fix this for future videos. Many thanks for such latest & informative content. 🙏
@j-5474-k9z
@j-5474-k9z Жыл бұрын
audio as well... but def subbing!
@lamnot.
@lamnot. Жыл бұрын
Can you also do a comparison for Embeddings generator , openai, oss and sota.....etc?
@engineerprompt
@engineerprompt Жыл бұрын
Good idea, will look into that.
@aloksharma144
@aloksharma144 Жыл бұрын
Thanks for the tutorial man, can we make the pdf search app without OpenAI API key?
@aloksharma144
@aloksharma144 Жыл бұрын
@Prompt Engineering
@engineerprompt
@engineerprompt Жыл бұрын
Yes, checkout videos on my localgpt project
@aloksharma144
@aloksharma144 Жыл бұрын
@@engineerprompt will do thanks!
@rezaulmasum205
@rezaulmasum205 Жыл бұрын
@@engineerprompt in your localgpt project you are not comparing embedding data, just comparing text to text. is there any open source model we can use to RetrievalQA.from_chain_type(llm=OpenAI) ? instead of OpenAI ?
@lamnot.
@lamnot. Жыл бұрын
Can you do a Vector DB comparison, FAISS, Redis, Chroma, Pinecone......etc? luv the channel.
@engineerprompt
@engineerprompt Жыл бұрын
Thank you, will look into it.
@kittipanwangsakarn4960
@kittipanwangsakarn4960 Жыл бұрын
does the pdf file restricted to be text base or it can read text as image pdf?
@engineerprompt
@engineerprompt Жыл бұрын
In this case, only text in PDF.
@ushousewatch
@ushousewatch Жыл бұрын
Can someone link me to the video where he shows how to use an open source LLM instead of openai?
@engineerprompt
@engineerprompt Жыл бұрын
Check out the localgpt project videos on the channel
@DarshitMehta-p4g
@DarshitMehta-p4g Жыл бұрын
How can we restrict the model to only answers from the questions that we have stored in the database and if someone asks questions that are not present in our PDF files so it simply gives us answers like I don't know or something like this. Can you please guide me here?
@engineerprompt
@engineerprompt Жыл бұрын
You can do that with a PromptTemplate. Where you provide a system prompt which will instruct the system not to provide answers from its own. I would recommend to watch this video on how to give the prompt: kzbin.info/www/bejne/oJC6ep9vob-ngLc and for promptTemplates, watch this video: kzbin.info/www/bejne/a17JlGeKocygqNE
@DarshitMehta-p4g
@DarshitMehta-p4g Жыл бұрын
​@@engineerprompt Thanks for your response, I watched both of the videos and understand it. But I have the doubt that how can I use prompts in RetrievalQA to restrict the model to not giving answers out of the chromadb data. Here is a sample of my code embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large", model_kwargs={"device": "cuda"}) model = AutoGPTQForCausalLM.from_quantized( "TheBloke/WizardLM-7B-uncensored-GPTQ", model_basename="WizardLM-7B-uncensored-GPTQ-4bit-128g.compat.no-act-order", use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=False, quantize_config=None, ) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_length=2048, temperature=0, top_p=0.95, repetition_penalty=1.15, generation_config=generation_config, ) local_llm = HuggingFacePipeline(pipeline=pipe) persist_directory = 'db' vectordb = Chroma.from_documents(documents=texts, embedding=embeddings, persist_directory=persist_directory) retriever = vectordb.as_retriever() qa = RetrievalQA.from_chain_type(llm=local_llm, chain_type="stuff", retriever=retriever, return_source_documents=True) query = "query" llm_response = qa(query) Can you please guide me on how can I use the prompt and how can I restrict the model to not give answers out of my Chromadb database?
@khushijain2272
@khushijain2272 Жыл бұрын
I am getting some hugging face url not found error. Any idea why?
@engineerprompt
@engineerprompt Жыл бұрын
Can you provide more details?
@MrGarg10may
@MrGarg10may Жыл бұрын
But openai embedding are now so cheap, just 1$ for thousands of documents which previously would have costed 100$, and once generated embedding can be persisted locally. So in this case is it still worthwhile to use instruct etc.?
@engineerprompt
@engineerprompt Жыл бұрын
Cost is just one factor to consider. Others would be data privacy, security, and the freedom to be not tied to a vendor
@MrGarg10may
@MrGarg10may Жыл бұрын
@@engineerprompt yes, I also tried instructxl embedding and it's better than openai so yeah now I see why I made it so cheap, still not worthwhile when I can run a better model locally for free
@MrGarg10may
@MrGarg10may Жыл бұрын
@@engineerprompt on data privacy openai has now 0 data retention policy for embedding at least, as a corporate that would need to be applied. But yeah, freedom is the best part. ..... similarly for llm which model open source model I can use?
@yusufkemaldemir9393
@yusufkemaldemir9393 Жыл бұрын
@Prompt Engineering, the qa_chain_instructEmbed and qa_chain_openai have the same llm=OpenAI. You are just comparing the 2 different embeddings but with same repository (OpenAI).
@nithinreddy5760
@nithinreddy5760 Жыл бұрын
ya, I have the same doubt too
@engineerprompt
@engineerprompt Жыл бұрын
Yes, the goal was to compare the information retrieval part of the pipeline. Wanted to keep the language model the same but based on the type of embeddings, it might get different information (context) to work with. Hope this helps.
@nithinreddy5760
@nithinreddy5760 Жыл бұрын
qa_chain_instrucEmbed = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0.2, ), chain_type="stuff", retriever=retriever, return_source_documents=True) What other open source can be used instead of OpenAI in this code? Any idea?
@engineerprompt
@engineerprompt Жыл бұрын
Check this out: kzbin.info/www/bejne/jqnbpqpqlM52sNk
@nithinreddy5760
@nithinreddy5760 Жыл бұрын
@@engineerprompt I have gone through that, but that video is about HuggingFace pipeline. The only doubt I have do have is, in the code you wrote for qa_chain_instructEmbed (HuggingFace embeddings), you're again using OpenAI embeddings, can we run the code without OpenAI?
@nithinreddy5760
@nithinreddy5760 Жыл бұрын
​@@engineerprompt Hello, can you just say, what code should I use instead of OpenAI in the above code?
@harshitdtu7479
@harshitdtu7479 Жыл бұрын
did u get your answer @@nithinreddy5760
@vinsentparamanantham5756
@vinsentparamanantham5756 Жыл бұрын
Do have similar concept explained using RAG
@engineerprompt
@engineerprompt Жыл бұрын
Yes, check out the localGPT videos
@waelmashal7594
@waelmashal7594 Жыл бұрын
Hi Can I set the folder path to download the embedding model ? where this code download it ? HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs={"device": "cpu"})
@engineerprompt
@engineerprompt Жыл бұрын
I haven't tested this with the embedding model but the approach proposed here might work: huggingface.co/docs/hub/models-downloading First download the model to custom path and the provide the custom path as the model_name.
@PhunkyBob
@PhunkyBob Жыл бұрын
Very instructive video, thank you! When you define `qa_chain_instrucEmbed`, how can we avoid the usage of OpenAI? (to be more specific: how to avoid to pay) Is there a way to use a local model with acceptable answers? I tried in Google Collab ``` llm = LlamaCpp(model_path=f"{root_dir}/llama-7b.ggmlv3.q2_K.bin", verbose=True, n_ctx=1024) qa_chain_instrucEmbed = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) ``` but the answer takes minutes to appear and is not at all relevant.
@engineerprompt
@engineerprompt Жыл бұрын
I would recommend watch my localGPT video. It will show you how to do other LLMs. You want to look for a better model (Vicuna-7B is a good option).
@PhunkyBob
@PhunkyBob Жыл бұрын
@@engineerprompt Thank you very much. 🙏
@brucewayne2480
@brucewayne2480 Жыл бұрын
What does mean open embeddings ? If I understood well , an embedding is just a vector
@harikrishnareddygali6244
@harikrishnareddygali6244 Жыл бұрын
you missed reading properly it's not open embeddings. It is openAI's embedding
@dimitriosvlamis8696
@dimitriosvlamis8696 Жыл бұрын
Embeddings are basically the conversion of the text to a vector representation. These vectors encode semantic (meaning) and syntactic relationships between the words. This is what the model directly uses to create responses using them as context.
@brucewayne2480
@brucewayne2480 Жыл бұрын
@@dimitriosvlamis8696 thanks that's what I understood but what does it mean a technology embedding (open embedding or OpenAI embedding) what are they used for ?
@dimitriosvlamis8696
@dimitriosvlamis8696 Жыл бұрын
​@@brucewayne2480 I am not sure what you refer to as open embedding, but the topic of the video is to show you an alternative way to make embeddings. Usually, if you want to use the gpt3 model, you need to make embeddings with a model from OpenAI and you basically have to convert the PDF to txt and send all the text to OpenAI, and they send you back the vector representation of this text. This can be an issue if you are dealing with sensitive data, that you do not wish OpenAI to collect, for that reason, there are ways to make embeddings locally or with HuggingFace embeddings, and use them with gpt3/4 etc. OpenAI wont have access to the whole document, only parts of the answers it gives since you will do some kind of semantic search and provide the model with very specific context related to your question. Keep in mind, you can not generate embeddings from any model, and use them with OpenAI models.
@rickie_
@rickie_ Жыл бұрын
He means open-source embedding. He's comparing free versions to OpenAI's API version and finding it to actually work well.
@mbrochh82
@mbrochh82 Жыл бұрын
Damn man... these results are still very humbling. We need to find better ways to create the chunks (ie keep sentences and even paragraphs together) before creating embeddings from them.
@user-wr4yl7tx3w
@user-wr4yl7tx3w Жыл бұрын
But can OpenAI understand alternative embeddings?
@engineerprompt
@engineerprompt Жыл бұрын
Its not being fed the embeddings but the associated documents.
@quantumbyte-studios
@quantumbyte-studios Жыл бұрын
InstructEmbedding is only 5Gb, nice to know
@neithanm
@neithanm Жыл бұрын
Please, get a cheap lavalier microphone. Your video quality will shoot up instantly and a lot of us will hear you better :)
@Avik-ku5li
@Avik-ku5li 8 ай бұрын
Hey Mr. if you did not use alternate to openai why did you write that as title. Totally misleading!
@efexzium
@efexzium Жыл бұрын
Seems like we all think a like
@geneoverride3725
@geneoverride3725 Жыл бұрын
Discord Pleaseeeee 🙏🙏🙏🙏🙏🙏
@UnitedOneDE
@UnitedOneDE Жыл бұрын
Stop moving your mouse all the time!
@sugbksugbk6556
@sugbksugbk6556 Жыл бұрын
WARNING:langchain.embeddings.openai:Retrying langchain.embeddings.openai.embed_with_retry.._embed_with_retry in 4.0 seconds as it raised RateLimitError: You exceeded your current quota, please check your plan and billing details.. im getting this error
@YashAgrawal-cs6tj
@YashAgrawal-cs6tj Жыл бұрын
Did you find any solution to this?
CHATGPT For WEBSITES: Custom ChatBOT: LangChain Tutorial
23:13
Prompt Engineering
Рет қаралды 104 М.
What are Transformer Models and how do they work?
44:26
Serrano.Academy
Рет қаралды 133 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
OpenAI Embeddings and Vector Databases Crash Course
18:41
Adrian Twarog
Рет қаралды 521 М.
Local GraphRAG with LLaMa 3.1 - LangChain, Ollama & Neo4j
15:01
Coding Crash Courses
Рет қаралды 35 М.
LightRAG: A More Efficient Solution than GraphRAG for RAG Systems?
19:49
Prompt Engineering
Рет қаралды 43 М.
Stanford CS25: V3 I Retrieval Augmented Language Models
1:19:27
Stanford Online
Рет қаралды 175 М.
RAG But Better: Rerankers with Cohere AI
23:43
James Briggs
Рет қаралды 64 М.
Anthropic’s Blueprint for Building Lean, Powerful AI Agents
28:25
Prompt Engineering
Рет қаралды 18 М.
Meet KAG: Supercharging RAG Systems with Advanced Reasoning
14:41
Prompt Engineering
Рет қаралды 20 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН