Finally, a proof that isn't just 2 lines of math and then jumps to a conclusion, condensing all assumptions and steps in one go. Very neat to see you go through each step diligently!
@JRay21138 жыл бұрын
You're awesome! I finally got it. No many instructors/authors are explicit about the requirement to distributing Σf into (x + y) at the inductive step.
@quickyairsoft8 жыл бұрын
Thank you! The proof was well explained, however, if you had said "representeded" one more time I would have gone crazy haha.
@Raselix2 жыл бұрын
Was never taught Pascal's rule so I stumbled hard on that step when I was doing this problem on my own. Most explanations didn't point out that step and moved right along. Thank you so much for explaining every step in detail!
@a3masi9 жыл бұрын
Best explanation on the web. Great work
@katiefunk69598 жыл бұрын
Godsend wizard man! Thanks for the help on my modern alg and number theory hw that's due in the morning 😂
@fatima.m37304 ай бұрын
First of all , you are AMAZING I’ve been looking for this proof for a really long time. second of all is it possible for you to make a video on the proof of the inclusion exclusion theorem using the sigma notations ? Thank you
@nikoka29803 жыл бұрын
Thank you so much, i really needed the verbal explanation, textbooks just don't explain this problem well enough for me.
@hussainfawzer2 жыл бұрын
What are the text books your referring to ? Names please
@nikoka29802 жыл бұрын
@@hussainfawzer im referring to Czech textbooks, written by my professor - i dont think theyre translated into english
@hussainfawzer2 жыл бұрын
@@nikoka2980 Do you have suggestions for rigorous proof based math books on these topics… I’m mainly interested in topics such as Binomial theorem Series and sequences Polynomials and rational functions I want some suggestions to proof based books…
@nikoka29802 жыл бұрын
@@hussainfawzer im sorry, none written in english come to mind - but i will let you know if i ever find any
@hussainfawzer2 жыл бұрын
@@nikoka2980 Okay
@shadow-ht5gk2 жыл бұрын
Very elegant proof, well done.
@VictorMunch Жыл бұрын
great explanation thanks a lot! One question: if we shift the summation index from k=0 to k=1 and m to m+1, wouldnt we also have to reduce the terms in the brackets to (m-1 *over* k-1)?
@zombieguy7593 жыл бұрын
I really love your videos, and I needed a favor. I need you to prove a bunch of things for me. I need you to prove the commutative property of addition for all real numbers, the multiplication of fractions, the addition of fractions, the commutative property of multiplication for all real numbers, and the distributive property for all real numbers including irrational numbers please. What I love about math is that it is always consistent and that properties are not made from thin air, and if you prove all these properties for me I will feel much better about that fact. Please I have searched in so many places and never found a satisfying answer. Please out of the kindness of your heart answer my questions
@jaroddavid59333 жыл бұрын
11:03 - Explanation of Factoring k = 0 and k = m + 1
@RaeRae-dp3kz8 жыл бұрын
Why is the shifting of index still needed if the original index starts with 0? I'm sorry I don't understand that part very well.
@matyaslebeda72512 жыл бұрын
insane, really well explained, thanks man
@Illuminous_4 ай бұрын
Thank you, you Absolute KING !
@chaumlp9 ай бұрын
6:58 Why is it k=1 and m+1? How to prove it is correct to transform from k=0 to k=1 and m to m+1? I still don't understand this.
@cameliad.b.47478 жыл бұрын
Thanks!! The explanation is very clear. Awesome work!
@christopheribarra11706 жыл бұрын
You just heave to expand a binomial to a power (x+b)^n as a Taylor expansion to get the binomial theorem.
@sxz4523 жыл бұрын
Elegant proof. Thank you.
@lazaredurand66753 ай бұрын
For the base case. Why don't you chose n=0 ?
@cfire0118 жыл бұрын
Really helpful. Thanks for the awesome explanation!
@dennisthompson47254 жыл бұрын
I'm not sure what justifies changing the index at 10:50. If I'm showing that LHS=RHS how can I just change what RHS is?
@alrafikri4 жыл бұрын
he doesn't change RHS at all. He only middling with LHS I think.
@Illuminous_4 ай бұрын
we didn't change RHS, we only manipulated LHS using three things. - Summation identities - Index shifting property - Pascal's rule
@ericasantoyo44159 жыл бұрын
Can you explain the rationale of how you added the x^(n+1) and y^(n+1) into the summation Like why can we add them into the summation Specifically why does k then begin at 0 and then n goes to n+1
@matthewwilson43585 жыл бұрын
a summation is just a sum of numbers, the x^n+1 and y^n+1 are just the first and last terms in that summation, that's why he rewrote them to look like the summation. You can "throw" them in because they are just terms that meet the criteria of the summation. By adding the first and last terms, you add the case when k=0 and the case when k=n+1 into the summation, because again its just addition. That's why the indices increment.
@thinkanddo23526 жыл бұрын
explained very well thank you.
@theviklink20444 жыл бұрын
When you say "factor out" k=0 and k=m+1, isn't it rather that you are subtracting these terms from the sum? Because you are left with four terms and no multiplication signs in the next step, thus no factors.
@sahilkhan_cs506 жыл бұрын
Fantastic thank u very much for the proof of binomial theorem.
@whatisnextthen98362 жыл бұрын
what is pascal theorem you used
@davidone84183 жыл бұрын
you're incredible thanks
@lelosaiyan25507 жыл бұрын
Thank you! That was a very clear tutorial.
@ashishkunyal29196 жыл бұрын
Poor is very well explained and it is very help full for me
@whatisnextthen98362 жыл бұрын
thnx very helpful
@rickmonarch45528 жыл бұрын
why don't you upload these pics?
@lukschs12 жыл бұрын
Al fin entiendo la prueba. Gracias
@Anthony-db7ou6 жыл бұрын
Can someone explain the place thing around 12:30?
@julienwitty64735 жыл бұрын
He use Pascal rule which state that C(n,k)+C(n,k-1)=C(n+1,k). The goal of this is to combine the 2 summations together so we can go further in the proof. Notice that the summation have the same expression inside so now they are comparable.
@Hi-FiKR16 Жыл бұрын
normally it is n=k and n=0 and then you subsitute k+1
@nohaatef71003 жыл бұрын
Very useful . Thank you .
@bradcrampton89207 жыл бұрын
very good. thanks. Now if I can do it without watching...
@SantiagoGonzalez-wy4vx8 жыл бұрын
I love this!!!
@merlinthegreat1009 жыл бұрын
Pretty good proof.
@chidionoh3 жыл бұрын
you lost me at 7:45 :(
@shurkou8 жыл бұрын
nice video brah ty
@sharpnova22 жыл бұрын
nice proof. no serious mistakes worth mentioning. handwriting a bit messy though. do you have a drawing tablet or are you using a mouse? if it's a mouse, then props to you because it's better than my mouse-writing. but a drawing tablet might be awesome for you. i love mine. it's changed the way i teach.
@Aleksandr-The-Bright-Guy2 жыл бұрын
brilliant
@JohnnyWorld2 жыл бұрын
Come back to Red Alert 2. You are missed.
@jeanmahe86575 жыл бұрын
good explanation congrats
@mangoatree6 жыл бұрын
Good job, thanks! :)
@rezaghasemzadeh944010 ай бұрын
very good
@lavenderjiang20029 жыл бұрын
Thanks Ron it helps :)
@sarthakhajirnis19089 жыл бұрын
Awesome... but in the end it should be = RHS
@RonJoniak9 жыл бұрын
Sarthak Hajirnis Ah, you are correct. Good catch.
@evanurena88689 жыл бұрын
Ron Joniak How did you obtain the summand inside the summation for the LHS to look different from the RHS.
@RonJoniak9 жыл бұрын
Evan Urena Is there a time you are referring to? -Ron
@evanurena88689 жыл бұрын
Ron Joniak Oh, never mind. You just muliplied both sides by (x+y) then simplified, am i correct?
@Vibranium3753 жыл бұрын
@@evanurena8868 No he just broke down the exponents
@mukongshu9 жыл бұрын
why don't you start from 0 at basic step? coz your k starts at 0
@mukongshu9 жыл бұрын
+mukongshu because n is from 1, 1,2,3,4...
@Axisoft4 жыл бұрын
Ross Geller does math
@mathsworld16194 жыл бұрын
good & thank you
@AnjaliSharma064 жыл бұрын
Thanks !
@marcodonlic5309 жыл бұрын
thank you so much
@12345papad9 жыл бұрын
Nice AMV
@ShaolinMonkster5 жыл бұрын
Nice thank you
@orlandomoreno61686 жыл бұрын
You call summands factors...
@raymondchen77168 жыл бұрын
well done
@MissAnaRichi5 жыл бұрын
It is "represented")))))
@vpambs1pt6 жыл бұрын
wow
@DdoubleB034 ай бұрын
Wtf how does anyone understand this?? So unfortunate just wasted 30 minutes trying to understand what's going on after 7 minutes into the video and no luck.
@daniloloma73677 жыл бұрын
Im tired to this .....
@VictorWLogan4 жыл бұрын
Amazing how many positive comments this guy's got for this non-explanation!! Noticing how horrible of an explanation this is, I wanted to glance through the notes. Based on what I read, I am sure that none of those people who claimed to have understood the train of thought presented here have done nothing except to confuse themselves...
@Vibranium3753 жыл бұрын
Actually it is quite a good explanation. Even though I already knew the proof, this actually made it clearer to me.