Black Scholes Formula I

  Рет қаралды 25,631

Probability and Stochastics for finance

Probability and Stochastics for finance

Күн бұрын

Пікірлер: 18
@Sam_BD-c7v
@Sam_BD-c7v 14 күн бұрын
Excellent introduction to the topic for beginners. I love this professor's sincereity.
@jriver64
@jriver64 5 жыл бұрын
I have never heard such complete clarity and brevity in explaining such a difficult equation until I came across to this video! He is an excellent orator when it comes to explaining Black Scholes! Thank you so much for this video. I am going to subscribe you.
@rancoxu
@rancoxu 6 жыл бұрын
thx a lot for this clear and comprehensive narration
@PankajKumar-ot3mg
@PankajKumar-ot3mg 4 жыл бұрын
Never seen such a good teacher like you sir..
@niazghumro2350
@niazghumro2350 5 ай бұрын
Very informative by professor like you.
@elfadlaouielfadel932
@elfadlaouielfadel932 7 жыл бұрын
maachallah , you are a good prof.you explain very well
@elfadlaouielfadel932
@elfadlaouielfadel932 7 жыл бұрын
very good lecture
@desiquant
@desiquant 2 ай бұрын
25:42 This seems wrong! If you have interest r for time period [0,T], then the interest rate per interval would be r/n. And, hence the compound interest would be P*(1 + r/n)^{n*T}. Now, we know that \lim_{n \to \infty} (1 + r/n)^n = e^{rt} And if we raise to the power both sides by T, that is how we get Compound interest to be e^{rT}. What professor has done is absolutely wrong! PS: T should be time-period in years
@nikhils216
@nikhils216 4 жыл бұрын
Thank You Sir. Very Well Explained. I have one question..at 20:50 how did you write that differential equation? How S(t) satisfies that differential eqn?
@dhruvrathore1011
@dhruvrathore1011 3 жыл бұрын
S(t) is assumed to follow the SDE of Geometric brownian motion. It is assumed in the black scholes model.
@sfratini
@sfratini 4 жыл бұрын
Why compute the option price based on the time of expiration when in fact, the option holder can execute the option at any time between the time of purchase and the expiration date?
@yashwantchougale1600
@yashwantchougale1600 4 жыл бұрын
He's talking about a europian option. What you are saying is valid for an American option, where the value of an option is determined by deciding if it's optimal to buy the stock or hold the option.
@mcfadden139
@mcfadden139 4 жыл бұрын
The principle still holds for a non-dividend paying stock since you are not supposed to exercise the option before maturity. Therefore, you can treat an American call option as a European call option for non-dividend paying stocks
@caesiusc6152
@caesiusc6152 2 жыл бұрын
Check Feynman-Kac formula and that's what you're talking about :) the BS formula is a special case of Feynman-Kac formula.
@Lukas-cm2b
@Lukas-cm2b 10 ай бұрын
one bit most confusing thing about pricing is the "time value". since it's not exactly true that the value of C option equals to difference between P and K, because there is also the time value. for example if P < K the option still may have the positive value, so this is kind of confusing at first glance, how to do the math regarding this.
@sreekanthsahukari8889
@sreekanthsahukari8889 3 ай бұрын
No, value of c is equal to the value difference between p and k on expiry date.
@anoopbains1257
@anoopbains1257 3 жыл бұрын
great lecture but I disagree on his assessment about people with small account not ot mess with options, infact it is the exact opposite. Options are great instruments for leverage and you can be on wither side of the market . If 95% of the options are never realized that just means you become option seller instead of buyer.
@danchatka8613
@danchatka8613 4 жыл бұрын
Many better videos about options pricing. Try the "Khan Academy" or "Option Alpha" channels.
Black Scholes Formula II
42:26
Probability and Stochastics for finance
Рет қаралды 15 М.
The Easiest Way to Derive the Black-Scholes Model
9:53
Perfiliev Financial Training
Рет қаралды 65 М.
Миллионер | 6 - серия
28:05
Million Show
Рет қаралды 1,6 МЛН
На ЭТО можно смотреть БЕСКОНЕЧНО 👌👌👌
01:00
БЕЗУМНЫЙ СПОРТ
Рет қаралды 4,4 МЛН
Кровавый лидер #сталин #китай #мао
00:55
Послезавтра
Рет қаралды 3,5 МЛН
QUANT FINANCE 1 - Why We Never Use the Black Scholes Equation, 1
16:12
N N Taleb's Probability Moocs
Рет қаралды 76 М.
Is the Black Scholes Actually Used in the Real World
8:29
Dimitri Bianco
Рет қаралды 25 М.
Ito Integral-I
33:46
Probability and Stochastics for finance
Рет қаралды 46 М.
An intuitive explanation the Black Scholes' formula
5:48
quantpie
Рет қаралды 33 М.
Martingales
35:47
Probability and Stochastics for finance
Рет қаралды 116 М.
Black Scholes Explained - A Mathematical Breakdown
14:03
Finance Explained
Рет қаралды 36 М.
The Math of "The Trillion Dollar Equation"
30:15
Dr Mihai Nica
Рет қаралды 107 М.
A simple derivation of the Black-Scholes equation
27:31
Juan MR Parrondo
Рет қаралды 3,9 М.
Миллионер | 6 - серия
28:05
Million Show
Рет қаралды 1,6 МЛН