Check out the graph of y=e^W(x*ln(x)) which is NOT exactly the same as just y=x www.wolframalpha.com/input/?i=graph+of+y%3De%5Eproductlog(x*ln(x)) So, why is this? Well stay tuned.
@lmaooopsie88944 жыл бұрын
for x >= 1/e though, it is
@fangamenst79653 жыл бұрын
Why xln(x) = ln(x)*e^ln(x) ??
@ISoldßinLadensViagraOnEbayఔ Жыл бұрын
Can you do x^y * y^x =xy^xy
@robloxcutter8 ай бұрын
7:00 technically y=x because W(xlnx)=lnx, e^lnx = x
@plasmacrab_74736 жыл бұрын
That is really cool, I especially like the parametric equation, as we have a way of deciphering the results without requiring a calculator.
@casey2069696 жыл бұрын
I know plus it gives cool identities like for t=3. (√3/3)^(√3/3) = (√27/27)^(√27/27).
@rcuster936 жыл бұрын
@blackpenredpen I’m not sure I understand how W(x*ln(x)) isn’t just x, since x=e^ln(x). And if that was the case, that would just give y=x. Did I miss something?
@BigRedProductions116 жыл бұрын
Robbie Custer same, commenting so I can see any replies
@casey2069696 жыл бұрын
xe^x is not injective so W is a multivalued function
@skulleeman6 жыл бұрын
Edit: oh I understand lol. People have good answers below. If it was W(x*e^x) then it would equal x, but it's W(x*ln(x)) instead so it doesn't. I'm not sure what you mean by x=e^ln(x) since that is just a complicated way of writing x=x.
@sylowlover6 жыл бұрын
@@skulleeman I think they mean that due to symmetry, taking the W of both sides will just give the same result of ln(x)=ln(y). But a commenter above made a good point about branches and functions being multivalued.
@icespirit6 жыл бұрын
W[ln(x)*x]=W[ln(x)*e^ln(x)] (the fish in this case is lnx, so) =ln(x)
@HaydarKarhan6 жыл бұрын
Well well...
@BigDBrian6 жыл бұрын
I prefer method 2. method 1 uses the assumption that y=tx which seems to come out of nowhere and just happens to work out. method 2 uses none of that, and ends up with a nice formula without introducing any new variables.
@MichaelGrantPhD6 жыл бұрын
mrBorkD But the Lambert W function cannot be computed analytically. At least I can use the first method with a simple calculator, to compute a wide variety of pairs (x,y). No can do with the W function.
@wesleydeng714 жыл бұрын
@@BigDBrian This is a commonly used trick. You can also let y=x^t and will work out as well.
@mathlegendno124 жыл бұрын
I don’t understand much of the natural log, so I prefer the first one
@louf71784 жыл бұрын
ha ha
@seroujghazarian63434 жыл бұрын
Speaking of the lambert W function, I actually tried to find the exact value of W(-1) by knowing that its opposite, -W(-1) , is a solution to x=ln(x). So, I worked around it, and I got to these 2 equations: Re(-W(-1))=Im(-W(-1))×tan(Im(-W(-1))) and Re(-W(-1))=-W(-cos(Im(-W(-1))) The latter coming from the fact that x=lnxx=e^x. And it felt like I was going nowhere with this.
@Hacker1186 жыл бұрын
what is the derivative and intergral of W (x)? i am just only curious on that
@anegativecoconut49406 жыл бұрын
For the record the minimum of the second method function is 1/e . How unexpected. ;-)
@asup7596 жыл бұрын
love those coincidences with e, did you know the maximum of x^(1/x) occurs at x=e
@mikail56826 жыл бұрын
5:01 Yes. A fish.
@maxreenoch16614 жыл бұрын
I knew the lambert W function was coming.
@drewmichael39866 жыл бұрын
But x ln x is just equal to (ln x)*e^ln x! So W(x ln x) = ln x then you make x = y! So I prefer the non-trivial first solution. (By the way, the example you gave for the second solution makes x = y)
@blackpenredpen6 жыл бұрын
Actually not quiet. e^W(x*ln(x)) = x when x>=1/e That's why I showed when you put 0.3 in for x you would get something that's not 0.3
@Theraot6 жыл бұрын
Drew, careful with those factorials :P
@sinamolavi71311 ай бұрын
@@blackpenredpen whats the difference between x and y that lets us simplify W(y ln y) but not W(x ln x)? and if we had the problem x^x=a*y^y as a more general form can we still solve it?
@NuptialFailures6 жыл бұрын
I know little about this function, but would there be a way to do a proof for your last video on x tetrated infinitely many times=i using the Lambert W Function?
@leandroteles78576 жыл бұрын
0:34 One force is equal to one force. -Redpen, Blackpen.
@RussellSubedi4 жыл бұрын
You say trivial solutions are boring. Yet, I find trivial solutions to be the most interesting.
@Thankmel8r6 жыл бұрын
Since the W function is multi-valued, the second approach captures all the solutions, both trivial (x=y) and non-trivial (x!=y). The Wolfram plot is deceiving, as it contains only one branch of the graph. However, the W function is not computable in closed form. On the other hand, the first approach provides all the non-trivial solutions, only, but it is computable in closed form.
@damianmatma7084 жыл бұрын
04:20 I think we should also write the Domain for "t": t ∈ (0;1) ∪ (1; +∞) (t>0 because both "x" and "y" have the same sign (x>0 and y>0) and t≠1 since x≠y)
@lightyagami66474 жыл бұрын
Yes ,i thought the same thing XD
@rotten-Z4 жыл бұрын
(1/4)^(1/4)=((1/4)^(1/2))^(1/2)=(1/2)^(1/2) Keep it simply
@jzanimates23526 жыл бұрын
Hey there blackpedredpen. I really enjoyed the videos you did a while ago on numbers in different bases. Could you try and do things like intergrals and derivatives in different number bases, or maybe trig functions in different bases. I thought it would be a really cool challenged for you to try
@eddiecurrent77215 жыл бұрын
Wouldn't the right hand side of the final equation just reduce to x, so that you're left with y=x?
@PeaceTheBall Жыл бұрын
W function has multiple outputs in a specific range so that's probably why we leave it with e^W(xlnx)
@sinamolavi71311 ай бұрын
@@PeaceTheBall doest that apply to y as well? thats very confusing
@karammohamed55696 жыл бұрын
Do a video on 2^x=3x
@shoaibakterhimel54516 жыл бұрын
really great solutions, both of them. i couldn't solve it even after trying for 2 days straight
@darcash17389 ай бұрын
On the lambert one, why not also make the x in a nice form, e^lnx lnx? With this we get lny = lnx y = x Is this the same? Is there some reason this is different? When should we not try to make it in the easiest form, and how might we be losing solutions by doing this
@adios42 жыл бұрын
1st method was relatively simpler to input values or who will grab a calculator to calculate W(69) thanks BlackpenRedpen do a Qna pls and tell your name
@adamcionoob39124 жыл бұрын
Really nice. Good job.
@pleappleappleap4 ай бұрын
How do you calculate the value of the W function for an arbitrary input?
@angelmendez-rivera3516 жыл бұрын
I would have preferred to write y = x*Ln(x)/W[x*Ln(x)], since division is generally simpler than exponentiation.
@Graknorke6 жыл бұрын
Can you explain where that comes from?
@engineeringforfuture4 жыл бұрын
The more better is the way you connect productlog with other function, so both of them solve the same problem.
@SteveMathematician-th3co9 ай бұрын
This is so coooool!
@afafsalem7396 жыл бұрын
Interesting lecture
@samharper58816 жыл бұрын
Gorgeous mathematics.
@i_am_anxious026 жыл бұрын
1) again, you love aquatic animals 2) that weird face with one of the fish was there in the rectangle when you did x^y=y^x Lol
@animesubber71366 жыл бұрын
Plot y^y=x^x in desmos, you'll get a sword. One is y=x, and the other two must be the stuff provided above
@JakeMarley-k6g5 ай бұрын
That is what i thought when i first saw it. Talk about a longsword
@physicsphysics19565 жыл бұрын
That equation just gives you the y=x graph.
@L1N3R1D3R6 жыл бұрын
I haven't tried, but could you use the existence of these two answers to find the elementary form of the Lambert W function for a different specific type of input, or would it just revert to W(xe^x)?
@angelmendez-rivera3516 жыл бұрын
L1N3R1D3R You cannot obtain an elementary form of the W(x) function. When we say it cannot be done, we do not say it because it has not been done, but rather, we say it because there is essentially a theorem which proves that this function is impossible to be express with a finite combination of elementary functions and arithmetic and algebraic operations. We could ten billion years searching for a way, and it is impossible, just as impossible as finding an ending to the digit expansion of π.
@unnwas6 жыл бұрын
0^0 = 0 or = 1? I almost replied "Obviously 1 and 0"...
@casey2069696 жыл бұрын
For x, y > 0.
@stephenphelps9206 жыл бұрын
0^0 is undefined
@unnwas6 жыл бұрын
+Stephen Phelps oh... makes sense
@unnwas6 жыл бұрын
+casey206969 I thought that before watching the video
@alexscott81256 жыл бұрын
@@stephenphelps920 0^0 is weird mainly due to how it is often used as being equal to 1 in mathematical problems such as differentiating or integrating power series. Having 0^0=1 tends to somehow give the correct outcome to certain problems it seems.
@MOHNAKHAN6 жыл бұрын
Great sir...👍
@brezhart50886 жыл бұрын
If you draw x^x, graph, you can see infinity variety of possible way to solve this.
@JamilKhan-hk1wl6 жыл бұрын
Yes, you can have t to be any real value
@seroujghazarian63436 жыл бұрын
Wait, isn't W(x×lnx)=lnx?
@blackpenredpen6 жыл бұрын
only when x>=1/e
@Graknorke6 жыл бұрын
So the Lambert W Function solution only works when y is above 1/e as well?
@seroujghazarian63436 жыл бұрын
@@blackpenredpen so W(-1/e)=-1?
@seroujghazarian63436 жыл бұрын
@@blackpenredpen also, isn't it the same condition for y?
@blackpenredpen6 жыл бұрын
@@seroujghazarian6343 I will make some follow up videos later on.
@connoruzzo40046 жыл бұрын
Very cool! I study physics and am only getting a minor in maths, I am wondering what college courses usually introduce the w function, out of curiosity?
@willnewman97836 жыл бұрын
In my experience, it is not standardly introduced in any course. It is not a very important function.
@stevethecatcouch65326 жыл бұрын
According to Wolfram Mathworld "Banwell and Jayakumar (2000) showed that a W-function describes the relation between voltage, current, and resistance in a diode, and Packel and Yuen (2004) applied the W-function to a ballistic projectile in the presence of air resistance. Other applications have been discovered in statistical mechanics, quantum chemistry, combinatorics, enzyme kinetics, the physiology of vision, the engineering of thin films, hydrology, and the analysis of algorithms (Hayes 2005)."
@xardasnecromancer5906 жыл бұрын
I prefer the second method. First one isn't complete. It gives only such solutions that are in the form of y = tx and what if there are different ones like y = sin(tx)? The second method is strict.
@wassollderscheiss33 Жыл бұрын
And how do you calculate W of any value?!
@JefiKnight4 жыл бұрын
Does either method capture all the answers?
@antimatter23766 жыл бұрын
that nike product placement in the thumbnail.
@zat51764 жыл бұрын
X to the teeth power lol
@sarmitachowdhury39776 жыл бұрын
Love your videos!! Can you please make a video on convergent series and ratio tests?
@blackpenredpen6 жыл бұрын
sarmita chowdhury I have some on those already. You can search it
@sarmitachowdhury39776 жыл бұрын
@@blackpenredpen Thanks a lot
@Ed-wn8hp4 жыл бұрын
Raising both sides of the equation to the 4th power will lead to 1/4 = 1/4.
@SakiJ936 жыл бұрын
Mmmh... why is W(x*ln(x)) = ln(x) only when x >= 1/e? is it the same for W(x*e^x) = x?
@blackpenredpen6 жыл бұрын
Because x*ln(x) is not 1 to 1. The graph of x*ln(x) has the lowest point at x=1/e and then increase when x>1/e
@Oberatous-Udurabas Жыл бұрын
What would the solutions be to x^y=y^x ?
@aaaaaa-jg2fg6 жыл бұрын
Waiting for some ways to graph it
@blackpenredpen6 жыл бұрын
Graph the parametric equations : )
@davidhilbert84146 жыл бұрын
i^x=x ; i=√-1 How to find the value of x?
@want-diversecontent38876 жыл бұрын
Privata Kanalo i^x = x e^ln(i^x) = x e^(x*ln(i)) = x e^(x*i*(pi/2)) = x e^i((x*pi)/2) = x e^i(theta) = cis(theta) cis((x*pi)/2) = x cos((x*pi)/2) + i(sin((x*pi)/2)) = x I just can't. Nope. Nope. Somebody with actual math knowledge, please continue this for me.
@kutuboxbayzan59675 жыл бұрын
i^x=x i=x^(1/x) Ln (i)=ln (x)/x let x=e^u -i*pi/2=-u*e^(-u) W (-i*pi/2)=u=ln (x) X=-i*pi/(2w (-i*pi/2))
@Patapom36 жыл бұрын
Amazing!
@fanamatakecick973 жыл бұрын
Wait, if W(y*ln(y)) = ln(y), then shouldn’t W(x*ln(x)) = ln (x)?
@alwysrite6 жыл бұрын
like the first method because you don't even need to know about Logs or Lambert to solve it.
@saharhaimyaccov49776 жыл бұрын
If t is -2?
@arunlalwani75654 жыл бұрын
Why cant we take x=y???
@stormswindy3013 Жыл бұрын
literally anything else < FISH :D
@GourangaPL6 жыл бұрын
Method on the right is easier (at least for me)
@maverickreynolds6 жыл бұрын
Why the fish?
@ToniBrasil1004 жыл бұрын
Make Sense 😂🙏
@crazyphil77824 жыл бұрын
Watch out, your solution is incomplete. The trivial cases are, although trivial, needed to make it complete and correct. Also, there’s no need for the product log. Just imply, by removing (0,0) and (1,1) (both are solution) from base set, that x/y = ln(y - x). Then you complete by searching all substitutions which work (like y = tx). The final step, to make it rigorous, is to prove that such constructed solution set is complete.
@numeroVLAD8 ай бұрын
Show us plots
@titan12358134 жыл бұрын
I want cheese. Anybody has some cheese? Blue cheese, please. Thank ya'll
@Dialectic426 жыл бұрын
t’th power... teeth power?
@fugmopoly4 жыл бұрын
...why does he use a fish
@migtrewornan80856 жыл бұрын
It just seems to me that answers in terms of W(?) are just re-statements of the problem not solutions per se.
@blackpenredpen6 жыл бұрын
Mig Trewornan Interesting enough, if you really put in some "good" values like 0.3, then you can get some cool answers out of it. I will make some follow up videos.
@thebloxxer226 жыл бұрын
If x could equal y, then x=1 and y=1. *Solved.*
@GuyMichaely6 жыл бұрын
That's a big caveat you got there fam
@ffggddss6 жыл бұрын
At the end of Part 1, your result, x = tᵗʹ⁽¹⁻⁻ᵗ⁾, y = t¹ʹ⁽¹⁻⁻ᵗ⁾, also means that tx = y = xᵗ. So you've also generated a solution for xy = yˣ. In Part 2, from where you have x ln(x) = y ln(y) take the W() of both sides in different ways. If you had treated both sides the same way, you'd have got the useless ln(x) = ln(y) so maybe you could've pointed out that you were being a bit clever there. The above fact also suggests that getting non-trivial aolutions relies on using the part of the W() "function" that is double-valued. Otherwise, you couldn't get two different answers on opposite sides. Or something like that... Fred
@continnum_radhe-radhe2 жыл бұрын
🔥🔥🔥
@user-mk4jq7uq9c6 жыл бұрын
X=Y
@林黑黑-b3c6 жыл бұрын
粗框眼镜好看~
@ИгорьКупринюк4 жыл бұрын
Why are you switch your avatar so often?
@mathadventuress4 жыл бұрын
X=y problem solved
@Lost_City0076 ай бұрын
Yeah 👍
@KaviAmanTenguriyaShaurya4 жыл бұрын
U r really awesome. Wow
@achikaznag9635 жыл бұрын
Wait a sec that gives us x=y ( did i miss something ?)