This is the best explanation of linear algebra I've ever seen. By the way english is not my native language but I understand everything
@brightsideofmaths2 жыл бұрын
Thank you very much :)
@AJ-et3vf2 жыл бұрын
Great video! Thank you! This reminds me of powerful numerical method used to solve large sparse systems of linear equations: Krylov subspace methods.
@itscristianodasilva2 ай бұрын
thank you!! i needed these videos, you're doing great work
@brightsideofmaths2 ай бұрын
Glad you like them! And thanks for your support :)
@Stefan-dg2js2 жыл бұрын
Thanks, your explanations are so much better then the ones from my unmotivated math prof
@brightsideofmaths2 жыл бұрын
Glad you like them!
@malawigw2 жыл бұрын
Finally!
@legasalehlogonolo10 ай бұрын
the only reason i failed linear algebra last year was that i didnt met your youtube channel. thank you very much for your explanations, this year i feel distinction 🎉✨❤🔥❤🔥❤🔥
@brightsideofmaths10 ай бұрын
Happy to help! :)
@mastershooter642 жыл бұрын
ayyyy linear algebra is back! hello! up to what topics are you going to cover?
@brightsideofmaths2 жыл бұрын
All of them :D
@mastershooter642 жыл бұрын
@@brightsideofmaths awesome :D
@oni83372 жыл бұрын
@@brightsideofmaths hoping for a rank nullity video :)
@ichkaodko70202 жыл бұрын
I am wondering if affine subspace is indeed a subspace? I mean, by the characterisation for subspaces, no zero vector is in affine subspace right?
@brightsideofmaths2 жыл бұрын
Affine subspaces are not linear subspaces in general.
@ichkaodko70202 жыл бұрын
@@brightsideofmaths ah thank you. that's why affine subspace has no zero vector in it hence it is not linear.
@VolumetricTerrain-hz7ci6 ай бұрын
There are unknown way to visualize subspace, or vector spaces. You can stretching the width of the x axis, for example, in the right line of a 3d stereo image, and also get depth, as shown below. L R |____| |______| TIP: To get the 3d depth, close one eye and focus on either left or right line, and then open it. This because the z axis uses x to get depth. Which means that you can get double depth to the image.... 4d depth??? :O p.s You're good teacher!
@malawigw2 жыл бұрын
If I have a subspace, I will get a vector in you
@narendraparmar163110 ай бұрын
Thanks
@brightsideofmaths10 ай бұрын
Nice :)
@DOROnoDORO2 жыл бұрын
I thought of an interesting example: is {(x, y) | xy ≥ 0} a subspace of R²? It's the union of the first and third quadrant. edit: nope, (1, 3) + (-2, -1) = (-1, 2) which is not in that set. rip
@L23K2 жыл бұрын
Warum nach meiner mathematischen Grundlagen Klausur :((