Measure Theory 12 | Carathéodory's Extension Theorem

  Рет қаралды 39,053

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 46
@beback_
@beback_ 4 жыл бұрын
This is not only helping with my Analysis class but also with my German learning because of how you structure your sentences.
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Interesting :D I also have a German version of this video if this can even help you more.
@keyvanfardi419
@keyvanfardi419 Жыл бұрын
Yes. He has a nice accent.
@qinkoo7682
@qinkoo7682 4 жыл бұрын
Thanks from South Korea and look foward to proof of theorem!
@nskeip
@nskeip 4 жыл бұрын
Thanks a lot for your work! That is great. You know, in 13:57 seems like [a, c) U [d, b) - seems like it is not quite correct. Because semirings just don't know what unions are. But the idea is correct - [a, b) \ [c, d) is still in the semiring. But for another reason: it is because if A is subset of B, there is a finite disjoint family of sets whose disjoint union is A \ B
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Yes, this is indeed what I meant there. Thanks!
@qiaohuizhou6960
@qiaohuizhou6960 3 жыл бұрын
note: the theorem helps to prove the uniqueness and existence of lebesgue measure
@duckymomo7935
@duckymomo7935 5 жыл бұрын
Yay this is another good theorem
@jonathanaraldi6354
@jonathanaraldi6354 5 жыл бұрын
man you're the best, I just needed it today
@adityamanimishra5053
@adityamanimishra5053 4 жыл бұрын
nice and simple explanation
@qiaohuizhou6960
@qiaohuizhou6960 3 жыл бұрын
A is a subset of power set 6:20
@karimkafi1872
@karimkafi1872 5 жыл бұрын
thank you for your great work
@swapnanilbakshi8493
@swapnanilbakshi8493 Жыл бұрын
great work sir
@happyhedgehog6450
@happyhedgehog6450 4 жыл бұрын
Amazing videos, thank you.
@duckymomo7935
@duckymomo7935 5 жыл бұрын
You will go over radon nikodym right
@Fastsina
@Fastsina 4 жыл бұрын
Thank you so much!
@harounsuliman1692
@harounsuliman1692 Жыл бұрын
thank you in advance
@sunilrampuria7906
@sunilrampuria7906 4 жыл бұрын
Thanks for the video. I am not convinced regarding why we require the countably infinite union of Aj to be in the semiring. Wouldn't the condition (b) of the measure, vacuously hold true if the countably infinite union doesn't belong to the semi-ring? Thanks
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
You are welcome! I am not sure if I understand you correctly. I gave the definition of a pre-measure. There, part (b) only makes sense if we look at sequences of sets where the infinite union lies in the semiring.
@alperencil8653
@alperencil8653 22 күн бұрын
Hi, at 16:20 by introducing the union of countable family of sets into a semi-ring aren't we simply assuming that it is a Sigma-algebra? This seems contradictory though, since the Pi-system defined by [a,b) is obviously not a sigma-algebra, but only an algebra (or a semi-ring, as referred in the video). Can you explain that part? Thanks.
@brightsideofmaths
@brightsideofmaths 22 күн бұрын
We just assume the sigma-additivity for sets where the union in in A again. This property says nothing about the semiring itself.
@MrWater2
@MrWater2 Жыл бұрын
Haaalo!! What's the difference between the concept of semiring and algebra? For example in Chapter 6. ABSTRACT MEASURE AND INTEGRATION THEORY of Stein and Hakarschy (page 270) they defined the premeasure on an algebra. But looks like the same definition of the semiring given here. Thank you again!
@metalore
@metalore 2 жыл бұрын
A Borel Sigma Algebra contains every open, closed and partially open/closed set on R, correct (as a result of the complements and unions of open sets)? I can't find a video where you've shown what exactly is in B(R) (and what is not). For condition b of the Extension Theorem, we just create a sequence of intervals in R that includes all of R? Such as (-n,n) ? When could such a sequence not be found?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
I have a video where we construct a non-measurable set.
@kkkk-oy9qv
@kkkk-oy9qv 4 жыл бұрын
Thank you, you are the best
@roamlag
@roamlag 2 жыл бұрын
Thanks a lot for this video! (and this entire course) Q: in the most important example, how could you conclude so quickly that \sigma(A) equals the Borel \sigma-algebra?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
Glad it was helpful! Indeed, this follows from the definition of the Borel sigma algebra. This is a fact one should remember.
@novicadakovic6188
@novicadakovic6188 Жыл бұрын
​@@brightsideofmathsIn your video about Borel set you mentioned that this set is sigma algebra generated by open sets. Does this also applies for half-open sets or maybe closed sets in R?
@brightsideofmaths
@brightsideofmaths Жыл бұрын
@@novicadakovic6188 Closed sets are complements of open sets and, therefore, also in the sigma algebra :)
@novicadakovic6188
@novicadakovic6188 Жыл бұрын
@@brightsideofmaths Thank you for your prompt response 😊
@shibshankardey1262
@shibshankardey1262 4 жыл бұрын
Nice Lecture. Plz give some applications of it .
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
Oh, I have a few applications in the next videos of the series. :)
@aceofshade
@aceofshade 2 жыл бұрын
Is a semiring related to a pi-system?
@lucynowacki3327
@lucynowacki3327 5 жыл бұрын
Excellente. I love your lectures. Can we have Hahn-Banach theorem?
@sk8aholic123456789
@sk8aholic123456789 5 жыл бұрын
Is this part of the Measure Theory sequence?
@brightsideofmaths
@brightsideofmaths 5 жыл бұрын
Yes, of course! I put in the Playlist. However, I stopped numbering the videos because you don't have to know all the videos before this one to understand the recent topic :)
@sk8aholic123456789
@sk8aholic123456789 5 жыл бұрын
At the risk of stating the obvious, I love your work!
@aristodemosii.1980
@aristodemosii.1980 2 жыл бұрын
Did you also upload the 285 videos proving Carathéodory?
@brightsideofmaths
@brightsideofmaths 2 жыл бұрын
If there is demand, yes!
@MrWater2
@MrWater2 Жыл бұрын
@@brightsideofmaths Please :) !
@Fastsina
@Fastsina 4 жыл бұрын
Monsieur, you said in your video of Product measure and Cavalieri's theorem , that in this video , we've seen that product measure is in general is not unique, did you mean that uniqueness of extension does not apply for product measure?
@brightsideofmaths
@brightsideofmaths 4 жыл бұрын
For uniqueness of the extension you need the sigma-finiteness.
@Fastsina
@Fastsina 4 жыл бұрын
@@brightsideofmaths Thank you!
@beback_
@beback_ 4 жыл бұрын
He's a Herr not a Monsieur hehe
@raulfiligranavillalba7605
@raulfiligranavillalba7605 2 жыл бұрын
Hi, my name's Raúl. I'm trying to prove the Carathéodory's extension theorem and I'm finding some problems with the proof. It's obvious that the demonstration is based on the definition of the outer measure: mu*(A)={sum mu(Sn) | Sn in S for all n, A C U Sn} There's a problem with this definition because, by the definition of a semirring, we cannot be sure that exists a countable family of sets {Sn} which covers X. How do I have to proceed? Any ideas?
@cartmansuperstar
@cartmansuperstar 2 жыл бұрын
Isn´t that the property of sigma-finiteness of the semiring, that was mentioned in the video ?
Measure Theory 13 | Lebesgue-Stieltjes Measures
13:55
The Bright Side of Mathematics
Рет қаралды 41 М.
Measure Theory 14 | Radon-Nikodym theorem and Lebesgue's decomposition theorem
12:24
The Bright Side of Mathematics
Рет қаралды 43 М.
Миллионер | 3 - серия
36:09
Million Show
Рет қаралды 2,2 МЛН
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 36 МЛН
Thank you Santa
00:13
Nadir Show
Рет қаралды 54 МЛН
Measure Theory 23 | Proof of Carathéodory's Extension Theorem
11:28
The Bright Side of Mathematics
Рет қаралды 2,3 М.
16.1 Kolmogorov's Extension Theorem, Part 1
20:27
Todd Kemp
Рет қаралды 3,6 М.
Measure Theory 12 | Carathéodory's Extension Theorem [dark version]
19:01
The Bright Side of Mathematics
Рет қаралды 3,6 М.
Lecture 8: Lebesgue Measurable Subsets and Measure
1:14:02
MIT OpenCourseWare
Рет қаралды 11 М.
The sequence that grows remarkably large, then drops to zero!
17:28
Borel sigma-Algebra - Definition and Intuition | Measure Theory
12:31
Measure Theory 15 | Image measure and substitution rule
11:47
The Bright Side of Mathematics
Рет қаралды 18 М.
Carathéodory's Theorem Proof - Part 1/2 | Measure Theory
18:43
Problemathic
Рет қаралды 1,3 М.
All possible pythagorean triples, visualized
16:58
3Blue1Brown
Рет қаралды 3,9 МЛН