Real Analysis 14 | Heine-Borel Theorem [dark version]

  Рет қаралды 4,281

The Bright Side of Mathematics

The Bright Side of Mathematics

Күн бұрын

Пікірлер: 13
@michaeloppong1240
@michaeloppong1240 Жыл бұрын
Well explained video. Thanks
@brightsideofmaths
@brightsideofmaths Жыл бұрын
Thanks :)
@KurdaHussein
@KurdaHussein 7 ай бұрын
where can I find a proof of that theorem for Rⁿ ?
@brightsideofmaths
@brightsideofmaths 7 ай бұрын
It's literally the same proof as the one shown here.
@sub2jkoozi820
@sub2jkoozi820 Жыл бұрын
Just wanted to say how great your videos are! You are a great help to many, thanks :)
@sounakroy1933
@sounakroy1933 23 күн бұрын
how does divergence to infinity mean that the set has not accumulation values?
@brightsideofmaths
@brightsideofmaths 23 күн бұрын
"Divergent to infinity" essentially means "convergent to infinity"
@sounakroy1933
@sounakroy1933 23 күн бұрын
@@brightsideofmaths i am confused with the part where you say since |an| > n for all n in N for some sequence (an) in A it then imples that A has no accumulation values.
@brightsideofmaths
@brightsideofmaths 23 күн бұрын
​@@sounakroy1933 What does accumulation value mean?
@sounakroy1933
@sounakroy1933 23 күн бұрын
@@brightsideofmaths Accumulation values are generalisation of limits. A point a in R us called accumulation value of sequence (an) if there is a subsequence (ank) with limit a. If this arbitrary sequence is a convergent sequence then we know that limit f sequence and subsequence both converge to a. Right?
@sounakroy1933
@sounakroy1933 23 күн бұрын
@@brightsideofmaths so an unbounded sequence will diverge to infinity or - infinity. And terms of any subsequence won't converge right?
Real Analysis 15 | Series - Introduction [dark version]
6:04
The Bright Side of Mathematics
Рет қаралды 2 М.
Real Analysis 18 | Leibniz Criterion [dark version]
8:51
The Bright Side of Mathematics
Рет қаралды 2 М.
СКОЛЬКО ПАЛЬЦЕВ ТУТ?
00:16
Masomka
Рет қаралды 3,6 МЛН
Lamborghini vs Smoke 😱
00:38
Topper Guild
Рет қаралды 22 МЛН
快乐总是短暂的!😂 #搞笑夫妻 #爱美食爱生活 #搞笑达人
00:14
朱大帅and依美姐
Рет қаралды 13 МЛН
What if all of mathematics is just an elaborate fiction?
9:20
EJ Falconi
Рет қаралды 3,6 М.
Real Analysis 17 | Cauchy Criterion [dark version]
9:04
The Bright Side of Mathematics
Рет қаралды 1,8 М.
Real Analysis 16 | Geometric Series and Harmonic Series [dark version]
9:24
The Bright Side of Mathematics
Рет қаралды 2 М.
Fundamental Theorem of Calculus | Expansion of the Theorem
12:44
The Bright Side of Mathematics
Рет қаралды 1,5 М.
Algebra 10 | Subgroups
12:43
The Bright Side of Mathematics
Рет қаралды 739
Algebra 10 | Subgroups [dark version]
12:42
The Bright Side of Mathematics
Рет қаралды 470
Multidimensional Integration 1 | Lebesgue Measure and Lebesgue Integral
15:57
The Bright Side of Mathematics
Рет қаралды 1,9 М.
СКОЛЬКО ПАЛЬЦЕВ ТУТ?
00:16
Masomka
Рет қаралды 3,6 МЛН