at last! :) also waiting for the stochastic processes playlist. thank you!!!
@TheArtemis3rd3 жыл бұрын
This is a very nice series. Please keep it going. Very grateful for this.
@shlimsady3 жыл бұрын
Thank you, I’m already excited for part 7!
@derickd61502 жыл бұрын
Same! When will it come!?
@antoniodeoliveiranginamaub28452 жыл бұрын
I would like to learn more about singular distributions, pseudo function, cauchy principal value and Hadamard finite part integrals. Thanks
@antoniodeoliveiranginamaub28452 жыл бұрын
waiting for part seven, is very important, thanks
@sarojsi8903 жыл бұрын
I am fully impressed by your unit ball explanation . Thanks a lot upload more videos on distribution theory and sobolev space.
@brightsideofmaths3 жыл бұрын
Thank you, I will
@mateen87932 жыл бұрын
Eagerly waiting for your next videos of the series
@TheAlbertMiralles16 күн бұрын
Super nice!! Love all the serires so far :))))
@japedr3 жыл бұрын
If I remember correctly, this is the reason why the regular distributions are not "complete". The idea is that one can build a sequence of functions that do not actually converge (at least, not to a proper function), but the associated sequence of regular distributions converges to the delta distribution. So this is a Banach sequence that converges to something more general, so the set of regular distributions is not complete (same idea why a sequence of rationals converging to pi proves that rationals are not complete). In fact, IIRC, the set of all distributions is complete in this sense. Is all of this correct?
@dietmarkammel37313 жыл бұрын
@The Bright Side of Mathematics Awesome explanations! Thx a lot. When will you continue this series? Can't wait for the next one... :)
@brightsideofmaths3 жыл бұрын
Thank you very much. Working on it! :)
@dietmarkammel37313 жыл бұрын
@@brightsideofmaths Klingt gut. ;) Dank Dir.
@amiltonmoreira23413 жыл бұрын
@The Bright Side of Mathematics thank you for the lecturer . Could you introduce the concept of wavefront set in this series ? thank you
@douglasstrother65843 жыл бұрын
Now I am inspired to go out and play some ε-ball!
@brightsideofmaths3 жыл бұрын
Take some friends and play this game :)
@juandavidrodriguezcastillo9190 Жыл бұрын
diracs delta dont asing to a function its value at 0, when one composed the delta with another function delta(g(x))=sum {delta(x-xi)/g'(x-xi)} with xi the roots of g
@brightsideofmaths Жыл бұрын
Yes, but with the composition you are talking about a different distribution :)
@nafrost27872 жыл бұрын
I think there is a simpler proof why the delta distribution is not a regular distribution. Can't we just take any sequence of test functions such that the f_n(0) = 1 -> δ(f_n) = 1, the sequence of the diameters of the supports approaches 0, and that there exists r > 0 such that f_n(x)
@brightsideofmaths2 жыл бұрын
I really like the idea! However, as you already noted, for the Lebesgue integral, also unbounded functions can be integrable. Still there are a lot of proofs you can find for showing that delta is not regular. I did it in this way because it fits in my lecture :)
@rit12373 жыл бұрын
Haha I don't get anything
@oleksiishekhovtsov15643 жыл бұрын
same
@Vietcongster3 жыл бұрын
I recommend watching the whole distribution series before this one
@carl32602 жыл бұрын
Intuitive summary: - For any integrable function f, the integral ("I_p") of f(x)p(x) over a compact space (i.e. connected region) is the max value of p(x) over the space ("p_max") times a constant ("k"), ie I_p = k p_max. [p(x) is any test function]. - Reducing the space, k gets smaller and eventually k I_p < p_max. That is general, but choosing any p(x) s.t. p_max = p(0) => I_p < p(0). - However, for the delta map, I_p = p(0) [by def] => Contradiction