But Why Does L'Hopital's Rule Work?

  Рет қаралды 5,566

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 16
@lorenzopirozzi7298
@lorenzopirozzi7298 15 күн бұрын
It is important to remember that the limit of the derivatives is equal to the original limit provided that it exists. There are quite a few cases in which applying L’H gives you a limit that doesn’t exist, in contrast to the starting limit (if I am not mistaken one example of that is the limit of x->inf of x+sinx/x-sinx). In my experience, L’H is a good tool, but it requires quite a bit of calculations so usually it’s just better to use Taylor series expansions. Great video nonetheless!
@Vannishn
@Vannishn 15 күн бұрын
Very nice ! Thank you :) I think your assumptions on f and g are that they are both equal to 0 and differentiable around c. For the case ±infinty, the sign can be factored, and then you can flip top and bottom by taking the inverse, which then each indeed tend to 0.
@michaurbanski5961
@michaurbanski5961 17 күн бұрын
Very cool, especially for the 0/0 case! For the 8/8 case, can we show that the gradient always takes over? It seems hard to prove for all functions, it even seems false (are there no functions that take over their gradients?)
@ritvikmath
@ritvikmath 17 күн бұрын
Here's an interesting way to think about it! We know that the function e^x has the property that its gradient is itself e^x. In other words, e^x exactly keeps pace with its own gradient. But e^x doesn't "grow fast enough" to have a vertical asymptote. So, in some sense, any function which grows fast enough to have a vertical asymptote must do so by growing an order of magnitude faster than its own value. Not a proof, I'll admit, but it helped me justify this idea in my own head.
@michaurbanski5961
@michaurbanski5961 17 күн бұрын
@@ritvikmath Nice, thanks!
@enricolucarelli816
@enricolucarelli816 15 күн бұрын
For the 8/8 limit, I have come up to a, in my opinion, nicer proof: f / g = (1/g) / (1/f) thus we go back to a 0/0 limit. Aplying L’H we get L = L^2 lim g’/f’ deducing that L = lim f’/g’
@michaurbanski5961
@michaurbanski5961 15 күн бұрын
@@enricolucarelli816 I don't think it works, since (1/f)' is not (1/f') So even though we can make 8/8 into 0/0, we would get different derivatives
@enricolucarelli816
@enricolucarelli816 15 күн бұрын
@ I know! But if you do it carefully you’ll see it works out! (1/g(x))’= - g’/g^2 and (1/f(x))’= - f’/f^2 Substituting you get: L = L^2 lim g’/f’ -> 1/L = lim g’/f’ -> L = lim f’/g’
@martinkunev9911
@martinkunev9911 16 күн бұрын
13:10 The derivatives are being multiplied by a very small number h, which in the limit approaches 0. It is not obvious that the left terms are being outpaced.
@suhail_69
@suhail_69 15 күн бұрын
Great point !!
@ritvikmath
@ritvikmath 12 күн бұрын
yes that's an awesome observation and I'm gonna need to think more on it! I think it's a great highlight of what gets missed when trying to condense a formal mathematical proof into an "easier to understand" pseudo-proof
@snnehal
@snnehal 17 күн бұрын
😄 nice tie in to the life lesson
@ritvikmath
@ritvikmath 17 күн бұрын
😂 thanks
@deleted-something
@deleted-something 5 күн бұрын
thanks!
@frankansari3457
@frankansari3457 14 күн бұрын
I remember this rule back from school - but I admit I have not thought about this for decades. 😂
@ritvikmath
@ritvikmath 12 күн бұрын
😂
These Four Calculus Rules are Actually All the Same.
15:41
ritvikmath
Рет қаралды 2,2 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,9 МЛН
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
Pyside6 Tutorials | Basic Window Creation |  Day 1
8:27
Algo Science Academy
Рет қаралды 1
How to self study pure math - a step-by-step guide
9:53
Aleph 0
Рет қаралды 1,9 МЛН
This open problem taught me what topology is
27:26
3Blue1Brown
Рет қаралды 1 МЛН
What is the i really doing in Schrödinger's equation?
25:06
Welch Labs
Рет қаралды 428 М.
The Dome Paradox: A Loophole in Newton's Laws
22:59
Up and Atom
Рет қаралды 1,7 МЛН
Why π is in the normal distribution (beyond integral tricks)
24:46
3Blue1Brown
Рет қаралды 1,7 МЛН
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 306 М.
Inside the V3 Nazi Super Gun
19:52
Blue Paw Print
Рет қаралды 2,6 МЛН
Some "Prime Numbers" Are Not Fully Prime!
10:31
Combo Class
Рет қаралды 89 М.
VIP ACCESS
00:47
Natan por Aí
Рет қаралды 30 МЛН