KZ
bin
Негізгі бет
Қазірдің өзінде танымал
Тікелей эфир
Ұнаған бейнелер
Қайтадан қараңыз
Жазылымдар
Кіру
Тіркелу
Ең жақсы KZbin
Фильм және анимация
Автокөліктер мен көлік құралдары
Музыка
Үй жануарлары мен аңдар
Спорт
Ойындар
Комедия
Ойын-сауық
Тәжірибелік нұсқаулар және стиль
Ғылым және технология
什么是“感知机”,它的缺陷为什么让“神经网络”陷入低潮
25:48
“损失函数”是如何设计出来的?直观理解“最小二乘法”和“极大似然估计法”
22:07
Помоги Тревожности Головоломка 2 Найти Двойника Шин Тейпс Кетнепа
00:32
Turn Off the Vacum And Sit Back and Laugh 🤣
00:34
Players vs Pitch 🤯
00:26
Побег из Тюрьмы : Тетрис помог Nuggets Gegagedigedagedago сбежать от Nikocado Avocado !
00:18
从“卷积”、到“图像卷积操作”、再到“卷积神经网络”,“卷积”意义的3次改变
Рет қаралды 76,220
Facebook
Twitter
Жүктеу
1
Жазылу 32 М.
王木头学科学
Күн бұрын
Пікірлер: 137
@jiangli6533
3 жыл бұрын
大概看了一下,可以知道花了不少时间。但是我必须纠正一下你的概念理解还不是很准确。卷积核扣在图像中做相乘再相加的操作我们叫做点积。如果把3X3的卷积核看成一个9维向量,那么什么情况下点积的输出最大?是两个向量的方向一致的时候输出最大。也就是说图像中如果有与卷积核一样的Pattern时输出就最大。而卷积核是可以训练的,这个训练过程就是改变卷积核去找到图像中最重要的Pattern,找到这些最有效的Pattern做图像分类或其它。3X3的区域太小,只能“看到”很小的范围,解决的方式是有多层卷积层,每一层有Pooling,这样后面的层“看到”的区域就会越来越大。解决整张图片的识别问题。
@deerbeau
2 жыл бұрын
谢谢你,解释得好清楚啊。
@junchaochang6962
2 жыл бұрын
非常感谢您的解释
@helloc2606
2 жыл бұрын
因为这个博主是用新手的思维记录总结自己的学习过程,看完视频再看你的评论。感觉就很棒,这就是博主做到了RNA
@nullpointer0x0000
2 жыл бұрын
非常棒的解释!继续延伸一下如果把kernel size无限放大,可以就是一种Attention了
@xiaofu7883
Жыл бұрын
相乘再相加的操作叫作点积,卷积也是这样的,点积其实也可以看做当x 是对离散值的积分,也就是相加,可以看作特殊情况下的卷积。
@zhaojin6309
2 жыл бұрын
卷积这个词还是挺难理解的,但是如果是 convolution con 代表两者相互,后面代表演化,就是指两件事相互影响演化的关系,就容易理解了
@zifeimo9415
6 ай бұрын
讲的是真的好,是我看到的油管中文频道里面质量很高的,干货满满很有启发,思路清晰逻辑清楚,谢谢🎉
@hero23
Жыл бұрын
我来试着总结一下我的理解,卷积操作的本质,在图像操作领域就是用一个滤镜来处理原图像,不同的滤镜会得出不同叠加结果,换种说法就是用不同的筛选器来筛选不同的图像特征。如果退一步做更广义的理解,就是用一个影响力函数去处理原本的数据,以得到在某种影响模式下,原数据会呈现不同的想要的结果。卷积这个词我觉得应该分开看,卷就是压缩,积代表积累,意思就是对数据进行有效性压缩,然后把区域压缩积累起来形成新的数据,不断进行如此操作,最后得到一个高度特征数据。图片识别的本质就是比对处理后的高度特征数据。
@DxDy777
Жыл бұрын
能想明白,封神演绎里面的法宝之一:山河社稷图。那么再来学习“卷积”,那将是手到擒来。 山河社稷图中自成世界: 变化无端还变化,乾坤颠倒合乾坤。 思山即山,思水即水,想前即前,想后即后。 说穿了,就是用不同的函数,按照你想要某种逻辑,对那个原始图片,进行映射处理。 然后把那个进行了,幻像处理的图片再返还给你。 当然山河社稷图,更牛逼。它还能把经过幻象处理的结果,再进行空间立体化,以及再加上时间因子要素。
@dencechen6217
3 жыл бұрын
忍不住在赞一次,谢谢帮我理解,作为一个5年算法工程师,很惭愧
@chenwilliam5176
Жыл бұрын
如果一本教科書的作者無法讓一個完全不懂的初學者慢慢了解教科書的內容,那麼 我認為這本教科書的作者是一個「不合格」的作者 🎉 「懂」是一回事, 教一個不懂的人「懂」又是另外一回事 ❤
@patrickzhang-b3j
11 ай бұрын
绝对的好老师,各种比喻,各种对比,各种分析,把复杂的问题分析很有逻辑!
@user-yg31415
9 ай бұрын
f(x) is not the amount of food at time t, it is the speed of eating: the amount of eating at t is actually f(x)dt.
@ixy6864
2 жыл бұрын
像木头这样表达信息清楚的作者真是少见了,大部分人学到knowledge后只会制作了一些application来装做很厉害的样子或者只把最后的结果告诉你,而不会分享他们的学习和思考过程,那些大佬的书籍都是已经懂得人写的,给不懂的人看当然很难看懂。 知识的思考过程比知识本身要更加重要。我希望我可以成为像木头那样的人
@patrickzhang-b3j
8 ай бұрын
同感,自己理解并将理解和思考的过程能如此清晰的表达,难能可贵!
@bibo987945
Жыл бұрын
謝謝王老師的精彩解說. 這些教科書的作者感覺是故意不說明透徹.要讓讀者去思考摸索一番. 但很多時候少了一個步驟細節,就跨不過哪個檻 以前學校的資料壓縮的科本,jpeg壓縮也沒放係數表.只看書本的流程是寫不出來的. 值得花錢買的書真的很少.很多都是賺了錢又不把道理說明白.缺乏職業道德.
@WeedLee
3 жыл бұрын
哎呦妈呀,这讲得太好了,解开了我多年的疑惑。谢谢!
@chenwilliam5176
Жыл бұрын
我是氣功及太極老師: 我以為人類可以分成兩類: 一種是「不會運氣」,一種是「會運氣」 ❤ 我認為懂「人工智慧」比「會運氣」更重要 🎉
@jianhuang0124
7 ай бұрын
官方教材永远是最好的。
@wojohn6441
5 ай бұрын
打最好的比方,深入浅出,耐心细致....... 赞!
@patrickzhang-b3j
8 ай бұрын
这个视频我看了好几遍,感觉是真金白银的思考和理解,非常难得的分享。
@Bran1812
8 ай бұрын
吃饭的例子不是很好,因为数学上讲,卷积是输入*kernel=输出;不是输入*输出=存量,毕竟是加权求和嘛;吃饭的例子可以改成这个人一直吃,8点吃1个馒头,9点吃2个烧饼,10点喝了一碗汤,最后算出来一天吃了多少热量。我看了很多卷积,觉得我这个理解是正确的。欢迎讨论。
@NeMayful
3 жыл бұрын
太棒了. 喜欢这样深入浅出, 层层递进的讲解.
@洪好马
2 жыл бұрын
您的讲解,对我很有帮助,多谢。
@liangwu290
Жыл бұрын
你这说的也太好的吧,我一个艺术生都听懂了。刚学了微积分后,到处找了卷积,都没找到,在你这搞明白了,谢谢了
@xuelichen2497
Жыл бұрын
你可能是艺术生里最懂卷积的了……
@paulxie1716
Жыл бұрын
你个艺术生为什么要懂卷积,这世界实在太卷了
@MaleGeminiCat
8 ай бұрын
藝術生來學微積分和卷積?這個世界卷到令我瞠目結舌啊! 怎麼回事啊,我的天!
@omedomedomedomedomed
Жыл бұрын
吃饭这个例子,真不错!上午看了视频,下午就看到了卷积公式,感谢感谢!
@sasakevin3263
2 жыл бұрын
看教材是不可能的,说得太对了,就喜欢你这种学习方式,点赞订阅!
@helens7185
3 жыл бұрын
刚才一直不明白f和g之间为什么要是乘法关系,后来自己又想了想,大概理解了,g表示单位食物在每单位时间内的消化率,f则表示吃了多少食物,所以要乘以g这个单位时间内的消化率,得出实际吃进去得食物总共消化了多少。
@alchen75
8 ай бұрын
解釋的對入門的人很有幫助,留言裝B的人倒是不少
@田上健-f1r
Жыл бұрын
大学的时候只按卷积定义做一些练习操演,根本没有理解真正的意义。看了这个视频,觉得受益匪浅。而且后面又有网友再深入解说,是的内容更加完善。
@bohuang5586
2 жыл бұрын
对你的敬仰之情,犹如滔滔江水延绵不绝!
@at-work-in-office
2 жыл бұрын
謝謝你 講得太好了 很喜歡這種講解
@helloc2606
2 жыл бұрын
建议也可以推荐分享给同学朋友哈哈哈,这个博主需要人气
@nuaaliuxjob1
8 ай бұрын
很好,这个例子还可以再清楚一些。就是把食物消化曲线沿时间平移一下就更清晰了。
@dencechen6217
3 жыл бұрын
感谢帮我重新理解了高数的卷积,快10年了,
@biogirl18
Жыл бұрын
AI 里的"卷积(convolution)" 其实正确的叫法应该是 Cross-correlation
@skenming
3 жыл бұрын
代入初學者的學習過程,從零開始把學習的誤區都說得明白,非常幫助理解。
@lingshanliu5812
Жыл бұрын
yeah!真的讲得很好!谢谢你!
@connormarcus1997
3 жыл бұрын
补充一下,卷积可以看成随机输入x经过稳定系统y后的输出
@legendyang1837
15 күн бұрын
请问关于将人类说出来的语言命令转换成机器人具体可执行的机器指令有哪些模型可以推荐试用的?
@joetsai4676
3 жыл бұрын
卷积核和过滤器本质上是一个东西,不是根据特征提取结果区分的。
@wshuai5928
Жыл бұрын
谢谢作者,解答了多年困惑
@lihunter4437
2 жыл бұрын
木头大拿的每一个视频都值得认真看
@chenwilliam5176
Жыл бұрын
機器學習書籍中,都未提及 Converlution Integral 🤔
@CactusFF-d1x
8 ай бұрын
主播真是又好又帅又聪明。
@龍羽-f6l
2 жыл бұрын
講得非常好,幫我更了解捲積了謝謝~
@丹尼-m2l
3 жыл бұрын
講得真好!謝謝你的影片!
@詹哲瑋-w6n
3 жыл бұрын
謝謝你教得,讓我能懂卷積意思。
@jiangxu3895
3 жыл бұрын
讲得好,但是到了图像处理的这块儿,具体计算跟之前提到的计算逻辑不一样。前面提到的是f(x-1, y-1)*g(-1,1) + f(x, y-1)*g(0,1) … 没有体现出卷的特点。难道一定要卷再乘再求和么?
@howardyin
2 жыл бұрын
谢谢耐心讲解
@zhigangxu2007
8 ай бұрын
卷积就是不进位的乘法!一句话就可讲清楚!😊
@yanglu1625
Жыл бұрын
果断关注,讲得太好了❤
@paulxie1716
Жыл бұрын
吃饭函数这个感觉有点不对劲,吃饭函数的积分应该不是吃了多少饭,量纲上对不上。
@jingjiahuang9498
2 жыл бұрын
讲的超级棒 向你学习!
@jasonluobo6849
Жыл бұрын
讲的非常好👍很用心,三连
@user-TweetyBird
8 ай бұрын
我也搜了好多,终于找到你
@makoto.99
3 ай бұрын
非常好🎉
@宋立宇-p5q
10 ай бұрын
很棒,支持。
@jinxianlai
Жыл бұрын
卷积核提取特征真得好酷
@只是一个路过的
10 ай бұрын
卷不卷对我来说不重要,不过天天学习深度学习和机器学习方面的知识快把我卷炸了
@skyfall2099
Жыл бұрын
谢谢介绍,讲得太棒了
@tonyching2951
3 жыл бұрын
鼓勵鼓勵..!解釋很清晰
@俺老孙
3 жыл бұрын
讲的太好了,我一个学化学的竟然听懂了
@haopang-nm4bm
Жыл бұрын
讲的真的很好
@張淯淞-x6j
2 жыл бұрын
很讚的解說,清楚了解卷積擷取圖像特徵的原理
@sophiakong7081
Жыл бұрын
讲得很好!
@liangwu290
Жыл бұрын
额 11 分 10 秒那 卷积像素相加, 我没看明白,为什么是 -8 加在一起不应该是 0 0 0 0 0 0 0 0 0 8 加在一起是个 正 8 吗
@黃志佳
Жыл бұрын
我的理解应该是视频编辑错误了,不用纠结,这里主要表达的是计算之后的像素值即可
@user-TweetyBird
7 ай бұрын
我也同问。😂
@dongs3783
2 жыл бұрын
你为什么不把九个点摊平,flatten,这样解释不更方便吗?而且图像识别实际用的时候,也是这样做的。
@MasterMathematicswithMatthias
3 ай бұрын
这个例子没看懂,关于吃饭和消化,不理解为什么要用乘法
@彬-r5e
3 жыл бұрын
继续努力,越做成就越好
@shanjiang-fk2oz
Жыл бұрын
很棒,感谢分享
@ztc106
3 жыл бұрын
精彩! 解釋了數學公式背後的物理意義
@toypark3637
8 ай бұрын
王老師是學數學本科的嗎
@woodywan4010
2 жыл бұрын
講得太好了!
@paulxie1716
Жыл бұрын
非常精彩
@pony_1024
3 жыл бұрын
好赞的讲解
@faungding6948
3 жыл бұрын
點讚,幫我完成了我今天晚上要交的小論文
@zld190
3 жыл бұрын
讲的这么好,订阅数却这么少,这很不科学
@tsanyuwang1861
Жыл бұрын
你太棒了!!!
@onlyjimmy4ever391
2 жыл бұрын
受益匪浅
@davidguan2246
7 ай бұрын
被你这么一讲,我这个自以为懂卷积的都觉得自己不懂了。用线性系统里某一时刻的输出等于之前所有冲激响应的叠加来讲不是更清楚吗。
@lkay58
Жыл бұрын
那个up主是谁
@KennethKamhw
3 жыл бұрын
講解得太好 受教了
@wayne8863
2 жыл бұрын
积分好像不属于高等代数的内容
@L开门见山
3 жыл бұрын
看清楚,到底是一碗还是两碗🥣
@leesteven2003
Жыл бұрын
图像的卷积属于局部的卷积
@李少榆
Жыл бұрын
影片有料
@nbsboy1
3 жыл бұрын
学习的方法值得学习
@HSWang-ym2mm
9 ай бұрын
就是加权滑动平均
@shijzhen
4 ай бұрын
加油
@VictorO858
8 ай бұрын
谢谢你的一流讲解和图解。不妨参考一下国外的网上课程,例如Udemy的,视频+讲义+程式,十多二十多个小时的视频,售价十美元左右。视频里除了讲解外,还教如何下载图片集或字库到笔电,如何运行有关程式。学习者真的能用自己的笔电辨认自己的狗是狗,猫是猫。。。很有成就感
@huazhu
4 ай бұрын
图像这个卷积运算其实是相关运算,但相关运算和卷积运算公式形式一致只是倒一下个,所以老外也把它叫做卷积。但死脑筋的我认为这是错误的,应该就叫相关运算,信号处理的书上就有很清楚的定义。不要迷信老外,在你不知道的地方,老外也可能蠢得很。卷积主要考虑的是所有的信号累积的滞后效应,显然静态图片并没有左边信号对右侧的滞后效应,反之亦然。但是动态图像(movie)在时间上就会有滞后效应,就有可能施加真正的卷积运算,那时就要把时间倒过来乘上去了,这是我的推测。
@zhangperry6949
8 ай бұрын
个人觉得,这个“卷”只是翻译错误,类似“有理数”这样的误翻译
@stevenwong1099
2 жыл бұрын
透彻
@lkay58
Жыл бұрын
8。09 是不是不对啊
@klkl8123
3 жыл бұрын
感觉差不多就相当于加权,不过加权的时候对自变量有一个反转的操作。头一个例子里这种反转是有物理意义的,因为时间越早t越小,但是对应的时间间隔却更大。但是后面的例子根本没有必要反转吧,直接定义成周围的加权求和不就可以么,为啥一定要叫卷积
@wkaing
3 жыл бұрын
怎么说呢?我的这个视频,其实是先把这种计算叫做卷积认定为是事实了,然后事后去解释它为什么可以叫很多名字,偏偏要被叫卷积。 我的这个解释的作用,本质上是在给自己一个安慰,告诉自己卷积这个名字其实是有道理的,别继续困惑了。 至于它叫卷积真正的原因,可能有很多历史原因,当初提出图像的这种操作的时候,就是从卷积计算发展过来的,只不过后来发现其实叫做其他的更合适。这就像是化石始祖鸟,其实不是鸟,是恐龙,只不过历史原因当初叫成了鸟,已经既成事实了,那以后就把它当做是一个传统就行了。
@jiangli6533
3 жыл бұрын
@@wkaing 卷积就是去match pattern。你可以这样理解。
@helloc2606
2 жыл бұрын
@@jiangli6533 你的脚手架呢,哈哈哈
@user-TweetyBird
8 ай бұрын
老师,救我😢
@JallahBomber
3 жыл бұрын
感谢
@markhu3148
10 ай бұрын
牛!
@Zac-eg3mt
Жыл бұрын
不错
@hughrao
8 ай бұрын
太牛啦
@飄飄-k1g
8 ай бұрын
學校讀書都不清楚這是啥, 看了影片才清楚, 教學人才阿
@张三-f4z1z
Жыл бұрын
文中的动画用什么软件制作的?
@lkay58
Жыл бұрын
同问
@qiush88
3 ай бұрын
同问
@userx001
9 ай бұрын
漏講的一個東西 就是卷積是對連續函數運算 但是圖像卷積是離散數值
@zhigangxu2007
9 ай бұрын
卷积就是不进位的乘法!
@eroo2271
Жыл бұрын
机器学习中别理解函数的物理意义,很多时候要的只是他的曲线而已。
@fs2820
3 жыл бұрын
核心知识点,1972年的花花公子杂志。😂
@无敌张开
Жыл бұрын
都不用开倍速👍
@tomyu5403
5 ай бұрын
这个就是倍速了。应该是UP主的不稳定输出和2倍输出速率的乘积。
25:48
什么是“感知机”,它的缺陷为什么让“神经网络”陷入低潮
王木头学科学
Рет қаралды 20 М.
22:07
“损失函数”是如何设计出来的?直观理解“最小二乘法”和“极大似然估计法”
王木头学科学
Рет қаралды 23 М.
00:32
Помоги Тревожности Головоломка 2 Найти Двойника Шин Тейпс Кетнепа
Ной Анимация
Рет қаралды 3,7 МЛН
00:34
Turn Off the Vacum And Sit Back and Laugh 🤣
SKITSFUL
Рет қаралды 3,1 МЛН
00:26
Players vs Pitch 🤯
LE FOOT EN VIDÉO
Рет қаралды 133 МЛН
00:18
Побег из Тюрьмы : Тетрис помог Nuggets Gegagedigedagedago сбежать от Nikocado Avocado !
Фани Хани
Рет қаралды 1,5 МЛН
20:50
Seeing the world from the realm of God: Fourier Transform FFT
小哈片刻
Рет қаралды 31 М.
15:56
什么是卷积神经网络?卷积到底卷了啥?
妈咪说MommyTalk
Рет қаралды 78 М.
1:25:12
卷积神经网络(CNN)详细介绍及其原理详解
唐宇迪
Рет қаралды 261
21:41
人脸识别啥原理?人工智能(二)卷积神经网络
李永乐老师
Рет қаралды 357 М.
38:27
卷积神经网络的底层是傅里叶变换,傅里叶变换的底层是希尔伯特空间坐标变换
王木头学科学
Рет қаралды 57 М.
1:45:12
从编解码和词嵌入开始,一步一步理解Transformer,注意力机制(Attention)的本质是卷积神经网络(CNN)
王木头学科学
Рет қаралды 97 М.
8:23
【数之道 08】走进"卷积神经网络",了解图像识别背后的原理
FunInCode
Рет қаралды 44 М.
49:48
如何理解“梯度下降法”?什么是“反向传播”?通过一个视频,一步一步全部搞明白
王木头学科学
Рет қаралды 28 М.
30:17
“交叉熵”如何做损失函数?打包理解“信息量”、“比特”、“熵”、“KL散度”、“交叉熵”
王木头学科学
Рет қаралды 24 М.
25:50
“神经网络”是什么?如何直观理解它的能力极限?它是如何无限逼近真理的?
王木头学科学
Рет қаралды 30 М.
00:32
Помоги Тревожности Головоломка 2 Найти Двойника Шин Тейпс Кетнепа
Ной Анимация
Рет қаралды 3,7 МЛН