C4W1L04 Padding

  Рет қаралды 156,900

DeepLearningAI

DeepLearningAI

Күн бұрын

Пікірлер: 18
@kvishnudev
@kvishnudev 4 жыл бұрын
Andew is one of the most knowledgeable person on machine learning out there. His explanation is much based on theory. Thank you very much sharing the valuable info in youtube
@seanmenzies1986
@seanmenzies1986 3 жыл бұрын
Such great explanations to what's going on under the hood. Knowing is one thing, teaching is an entirely different animal. Kudos to the teacher for having mastered both!
@shahriarrahman8425
@shahriarrahman8425 4 жыл бұрын
Was struggling with some conceptions and this lecture provided insights I needed. Thank you so much!
@vipinmakde2426
@vipinmakde2426 6 жыл бұрын
When the stride is greater than 1 and we are using SAME padding concept, thus the size of the input image is retained. For example : input = 16, filter = 5, stride =5. Is value of P =(5-1)/2=2 ? Thus makeing the output of size [(n+2p-f)/stride]+1= 4 It can be seen clearly that output size is not retained.
@farmanshah1647
@farmanshah1647 6 жыл бұрын
The formula for calculating p in case of stride > 1 should be: Derivation: (n + 2p - f)/s + 1 = n (n + 2p - f + s) / s = n n + 2p -f + s = ns Formula: p = [n(s-1) + f - s] / 2 In your case where: input = 16, filter = 5, stride =5. p = [16(5-1) + 5 - 5] / 2 p = 64 / 2 = 32 Recheck: Output = (n + 2p - f)/s + 1 = (16 + 64 - 5) / 5 + 1 = 16
@marcbroadus
@marcbroadus 4 жыл бұрын
Sir Andrew, you're the boss!
@aramroshani6197
@aramroshani6197 3 жыл бұрын
Thanks for your great videos, but please can you explain which parmeter(s) determine the value for each member of the filters, I mean why do you use (1,1,1 / 0,0,0 / -1,-1,-1) but not other numbers. Thanks advance.
@hammad365
@hammad365 3 жыл бұрын
He explained that in the previous video, and explained other methods that use other numbers, or parameters that could be learnt too
@rachadlakis1
@rachadlakis1 2 жыл бұрын
Thank you.
@anjanakesavan5615
@anjanakesavan5615 4 жыл бұрын
Thank you so much for the explanation on zero padding. Why do we use 0 for padding and not 1 ?
@Payah-sy8qw
@Payah-sy8qw 3 жыл бұрын
because we want the pixel values ​​we want to filter using the kernel, still get the actual pixel values ​​when convoluted as they are not affected by the numbers in the padding
@rahuldey6369
@rahuldey6369 4 жыл бұрын
An extremely insightful lecture as always have been. But when to use Valid padding and when to use Same it wasn't clear, I mean in which scenarios we'll consider them and why?
@Sayied-s7d
@Sayied-s7d 8 ай бұрын
odd numbers are good
@Shewanee25
@Shewanee25 5 жыл бұрын
What is the difference between reflective padding and zero padding ?
@rahulpalli36
@rahulpalli36 4 жыл бұрын
in reflective padding , the edge pixels are added onto the outside copying the pixels from the edge of the image.in zero padding just add the zero pixels
@rohanshetty1016
@rohanshetty1016 4 жыл бұрын
***Note: 5:58 - Valid Convolution actually means that the input image size is 'valid' for this operation and there's no need for padding...
@gorgolyt
@gorgolyt 4 жыл бұрын
No, that's not what it means. Your comment really makes no sense in context, a convolution can be applied to any image of any size, there is no concept of a "valid image size for the operation". The video is correct.
@danieltheshark
@danieltheshark 4 жыл бұрын
thank you so much... Just Thank you !
C4W1L05 Strided Convolutions
9:02
DeepLearningAI
Рет қаралды 144 М.
C4W1L11 Why Convolutions
9:41
DeepLearningAI
Рет қаралды 104 М.
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 244 МЛН
Players push long pins through a cardboard box attempting to pop the balloon!
00:31
This Game Is Wild...
00:19
MrBeast
Рет қаралды 194 МЛН
How to Fight a Gross Man 😡
00:19
Alan Chikin Chow
Рет қаралды 18 МЛН
C4W1L09 Pooling Layers
10:30
DeepLearningAI
Рет қаралды 161 М.
Finding the Edges (Sobel Operator) - Computerphile
7:46
Computerphile
Рет қаралды 506 М.
MIT 6.S191: Convolutional Neural Networks
1:07:58
Alexander Amini
Рет қаралды 95 М.
CNN Receptive Field | Deep Learning Animated
10:28
Deepia
Рет қаралды 6 М.
Receptive Fields: Why 3x3 conv layer is the best?
8:11
Soroush Mehraban
Рет қаралды 8 М.
C4W1L06 Convolutions Over Volumes
10:45
DeepLearningAI
Рет қаралды 240 М.
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 244 МЛН