C4W3L04 Convolutional Implementation Sliding Windows

  Рет қаралды 119,507

DeepLearningAI

DeepLearningAI

Күн бұрын

Пікірлер: 60
@MohammedRefaatAli
@MohammedRefaatAli 7 жыл бұрын
I want to express my gratitude for making these lectures available for free :). I want to note that C4W3L05 is not there. thank you again
@pascalgula
@pascalgula 7 жыл бұрын
kzbin.info/www/bejne/nXzVlo2Fis5ghZI
@temirlanseilov9715
@temirlanseilov9715 5 жыл бұрын
Pictures the volume as the rectangle for simplification. Proceeds to draw the volume by hand :)
@Michel-gv1sr
@Michel-gv1sr Ай бұрын
Its about the images on the following lines..
@binchen591
@binchen591 6 жыл бұрын
It is really like a magic. Andrew, I love you....
@manuel783
@manuel783 3 жыл бұрын
Convolutional Implementation of Sliding Windows *CORRECTION* At 7:14, Andrew should have said 2x2x400 instead of 2x2x40. At 10:04 onward, the size of the second layer should be 24 x 24 instead of 16 x 16.
@noorameera26
@noorameera26 3 жыл бұрын
omg I couldn't completely get this in class just now but now I could! Thanks
@OrcaRiderTV
@OrcaRiderTV 4 ай бұрын
10:13 A small note to consider the size of the second matrix should be 24x24 after the 5x5 matrix not 16x16
@namlehai2737
@namlehai2737 3 жыл бұрын
damn, whoever came up with this idea deserves a cookie
@Rajjain_
@Rajjain_ 3 жыл бұрын
One problem I see in this implementation is that it may be the case that the model we trained for object detection that specific window size is not good for test object like if you trained for 14*14*3 it may be the case that car is covering 28*28*3 image whole area and model may perform poorly here!
@maxzjj
@maxzjj 2 жыл бұрын
At the end of the video, the bounding box inaccuracy is mentioned. In addition, I'd like to remark that the network can only recognize fully visible, unobscured cars at that moment, still.
@banipreetsinghraheja8529
@banipreetsinghraheja8529 6 жыл бұрын
This video comes after the next video in the list. (26->25->27..... is the right sequence of videos specified in the course)
@bobcrunch
@bobcrunch 5 жыл бұрын
Slides are created/deleted/rearranged each session, but the material is more or less the same. What's really missing are the problem sets. They are quite difficult if you're a newbie, but with a lot of 'Net searching, they are solvable. If you just audit the course, you can't download the datasets, but you can search for equivalent datasets and use those.
@hackercop
@hackercop 2 жыл бұрын
8:19 wow thats amazing
@debarunkumer2019
@debarunkumer2019 4 жыл бұрын
I am in love with this model
@qwewqeqweqwe8334
@qwewqeqweqwe8334 5 жыл бұрын
Wow!! Absolutely wow!
@Sw3l
@Sw3l 6 жыл бұрын
I follow the idea, however I don't get how it can be implemented programmatically. When you train your convolutional neural network, you define a input size. If a larger image is pushed trough the network, I assume an error on input dimensions will pop up. Can the dimensions be easily changed after training?
@mariama70
@mariama70 6 жыл бұрын
You need to preprocess your image (cropping/resizing) to conform with the image size used in the training process.
@elgs1980
@elgs1980 6 жыл бұрын
I have the same question. I really hope Andrew would talk more about the back propagation.
@johnaremania7269
@johnaremania7269 6 жыл бұрын
Since the idea is changing the FC layer to convolutional layer, we can easily train and test the model without specific size of width and height, for instance we can set the value of input dimension as None,None,3 in Keras. Remember, convolutional layer is different with FC, it shares the weight to each features map.
@diegocifuentes6784
@diegocifuentes6784 5 жыл бұрын
Yes, because you save the weights of the kernels, so when you're testing your network you never worry about the dimentions of the input size if they are larger than the dimentions used on training
@이시현학부생-소프트
@이시현학부생-소프트 4 жыл бұрын
When 5x5x16 change to 1x1x400, I think this process should be linear. Then, Is there no ReLU function in this process? (I meant only 5x5x16 -> 1x1x400)
@lilrun7741
@lilrun7741 Жыл бұрын
it does, He skipped flatten layer and continued fc layer
@mailoisback
@mailoisback 4 жыл бұрын
Why, in sliding window approach, matching exact position of an object is a problem? If the stride is 1, then we cover each pixel of the image (let's say with a 14x14 box centered at each pixel of the image), so we cover all the possible locations in image and therefore we will match the exact position of an object (its center). The problem arises only when we use a bigger stride.
@ahmadhesham1389
@ahmadhesham1389 2 жыл бұрын
A smaller stride = more computations. Also, the objects may show up with different aspect ratios, which would require using many sliding windows with different sizes to detect all of them, so you can imagine how badly this scales up when you combine it with a small stride.
@andrei-robertalexandrescu5103
@andrei-robertalexandrescu5103 2 жыл бұрын
This is golden.
@touchyto
@touchyto 2 жыл бұрын
A question: slide window is the same that feature map that we get when apply a convolution filter? thank you
@ChristianBrugger
@ChristianBrugger 2 жыл бұрын
I am using CNN's with a lot of layers. They use padding so that the input size doesn't shrink. This makes this approach not so straight forward. Any idea how to deal with that? Another case are Resnet like blocks, which have different convolutions on different paths merging. Without padding this is difficult, any idea?
@TheKovosh
@TheKovosh 4 жыл бұрын
I am pretty sure that the next video is not uploaded correctly. One video is missing and because of that the anchor box lecture dose not make sense.
@GK-jw8bn
@GK-jw8bn Жыл бұрын
thank you!
@anushkajain9529
@anushkajain9529 3 жыл бұрын
I didn't understand how convolutionally the number of iterations for a stride will be less ?
@sifat-z5y
@sifat-z5y 3 ай бұрын
can someone explain this video? im almost done with all the previous videos. but more i watch this video i feel like im missing out something i do still dont know why
@Cliu960129
@Cliu960129 6 жыл бұрын
What if the dimension of the test image is smaller than that of training images? Do we use paddings?
@sandipansarkar9211
@sandipansarkar9211 3 жыл бұрын
suprb explanation
@shuyuancai4504
@shuyuancai4504 3 жыл бұрын
using the parameter setting in this example, the last 3 conv layers need more parameters than the last 3 fc layers……am I wrong or it is actually this case
@LakshmikanthAyyadevara
@LakshmikanthAyyadevara 4 жыл бұрын
extraordinary viedo
@keshavkumar7769
@keshavkumar7769 5 жыл бұрын
hello sir , i think you have not provided C4W3L04 video
@tag_of_frank
@tag_of_frank 2 жыл бұрын
How to build training data for this?!
@anonimo-xz2tg
@anonimo-xz2tg 4 жыл бұрын
can someone please explain the last 6 minutes of the video? I cant follow any of it
@krishnar6717
@krishnar6717 3 жыл бұрын
Don't worry if you can't follow it
@vent_srikar7360
@vent_srikar7360 Жыл бұрын
how did we drop from 28 x 28 to 16 x 16
@vikadubanevica7098
@vikadubanevica7098 8 ай бұрын
it seems like a typo, should be 24x24
@anupamsingh3732
@anupamsingh3732 4 жыл бұрын
how to set size of sliding window in cnn,
@AseemPokharel
@AseemPokharel 5 жыл бұрын
For previsious video link : kzbin.info/www/bejne/a5aYoZ2bpM-tpM0 or search with title "C4W3L03 Object Detection"
@deepeshmhatre4291
@deepeshmhatre4291 3 жыл бұрын
This left me more confused
@filippocastelli42
@filippocastelli42 5 жыл бұрын
Anyone got some sort of written reference (books/papers) for this?
@sandyz1000
@sandyz1000 5 жыл бұрын
Overfeat paper from the arxiv
@forestalauxhd2003
@forestalauxhd2003 3 жыл бұрын
then the FCN are CNN?
@ihebbibani7122
@ihebbibani7122 2 жыл бұрын
I was reading about that yesterday. Actually , FCN stands Fully Connected Networks where you have ONLY Convolution operators. CNN stands for Convolutional Neural Networks where you NOT ONLY Convolution operators but also contains Fully Connected Layer(s). This is what I have understood. Hope this is clear.
C4W3L06 Intersection Over Union
4:19
DeepLearningAI
Рет қаралды 81 М.
R-CNN: Clearly EXPLAINED!
18:32
Soroush Mehraban
Рет қаралды 35 М.
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 196 МЛН
How To Choose Mac N Cheese Date Night.. 🧀
00:58
Jojo Sim
Рет қаралды 109 МЛН
Миллионер | 3 - серия
36:09
Million Show
Рет қаралды 2,2 МЛН
C4W4L04 Triplet loss
15:30
DeepLearningAI
Рет қаралды 129 М.
C4W3L08 Anchor Boxes
9:43
DeepLearningAI
Рет қаралды 140 М.
Lecture 13.2: Object Detection [Sliding Window Approach]
24:35
C4W1L06 Convolutions Over Volumes
10:45
DeepLearningAI
Рет қаралды 240 М.
C4W2L04 Why ResNets Work
9:13
DeepLearningAI
Рет қаралды 144 М.
C4W3L01 Object Localization
11:54
DeepLearningAI
Рет қаралды 158 М.
80-Convolutional implementation of sliding windows
9:53
Dr.P.V.Yeswanth
Рет қаралды 478
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 196 МЛН