thankyou so much sir ❤ may be you dont know that your interesting qns make my day thanks 🙏
@PreMath Жыл бұрын
You are very welcome! Thanks for your continued love and support! You are awesome, Rishu. Keep smiling👍 Love and prayers from the USA! 😀
@nurmaryamhibatullah667 Жыл бұрын
What a detailed working way! Great job! Because we cannot simply expect the length side of the green square is just a half of the length side of the blue square. It must be proven.
@venkatk1968 Жыл бұрын
I could get the step after a few minutes. I never get bored watching these videos
@RobertHering-tq7bn Жыл бұрын
Again this is a very nice puzzle! And, there is another way to find the area via the rule for strings within a circle. To use this we simply complete the half circle downwards to a complete one and add such a small square at the right sight of the bigger square, as well. After determining the side length of the blue square to be 18, using the two strings crossing in C we have (looking for the direction B to E before D over C)... (18-x)*(18+x) = x*(18+x) 18-x = x 2x = 18 x = 9 And the area of the green shaded square is 81 (cm²).
@soli9mana-soli4953 Жыл бұрын
Nice solution! Let's promote the non Pythagorean solution
@theoyanto Жыл бұрын
I love these quadratic ones mainly because I need the practice. This was another great learning experience for me. The factoring bit at the end I find a bit confusing so usually stick into the quadratic formula calculator app ... Thanks again 👍🏻
@wackojacko3962 Жыл бұрын
When you grouped 9X as 18X - 9X. Ingenious!!!!
@DR-kz9li Жыл бұрын
Thanks for the lesson. Very clear explanation, as usual. At the end I did: 18-x/x =x/x
@KAvi_YA666 Жыл бұрын
Thanks for video.Good luck sir!!!!!!!!!!
@HappyFamilyOnline Жыл бұрын
Very well explained👍 Thanks for sharing😊😊
@marioalb9726 Жыл бұрын
The área is : Area green = Area blue / 4 Area = 324 / 4 Area = 81cm² ( Solved √ ) Extremely easy!!!!! This is the Theorem of the square inscribed in a semicircle. It is always so : Área=1/4 Area Side=1/2 Side There 's no need for complicated calculations
@octobrerouge1997 Жыл бұрын
Merci comme d habitude ❤
@TurquoizeGoldscraper Жыл бұрын
Instead of numbers, I expressed the size of the green square as a factor of the blue square and determined it to be half the size, or one quarter the area. 324 / 4 = 81. Also, I noticed you could rotate it 90 degrees and D lines up with F.
@bigm383 Жыл бұрын
Lovely work Professor!❤🥂👍😊
@picknikbasket Жыл бұрын
Nice, I didn't imagine a quadratic would be involved.
@alinayfeh4961 Жыл бұрын
Blue shaded square √(324)=18, similar side length of Blue square 18, thereom phythagorus r=√(405), x=9 Green shaded square 81or similar Area two lengths squares 1\4
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! You are awesome. Keep it up 👍 Love and prayers from the USA! 😀
@TheIntellectualRedneck Жыл бұрын
I drew this and my instinct was that the solution was that the ratio of the sides of the two squares would be 1/2. The question that comes to mind is about the *next* square (if we insert the largest possible square to the left of the green one), how big will it be? Is there a proof that describes this series of squares of diminishing size? Edit: I guess that's really a unit circle, the Sine/Cosine laws are in there; that should provide a path.
@harikatragadda Жыл бұрын
Applying the Intersecting Chord Theorem at point C, X*(18+X)=(18+X)*(18-X) X = 9
@vishwassharma3312 Жыл бұрын
I was also thinking exactly the same.
@pwmiles56 Жыл бұрын
With hindsight, you could divide the blue square into 4 equal squares of side 9. If you copy one of these and place it in the position of square ABCD, it's immediately apparent that OD=OE (as they are both diagonals of a rectangle of 2 squares). But I actually solved the quadratic.
@ybodoN Жыл бұрын
First of all, OD=OE as they are both radii of the semicircle...🤔
@pwmiles56 Жыл бұрын
@@ybodoN Yes, they have to be, but this shows this is achieved with a square of side 9.
@jamesrogers4761 Жыл бұрын
So is AB always equal to BO? Another amazing circle traight?
@davidellis1929 Жыл бұрын
Here's a slight simplification. Let x be the side of the small square, r the radius of the circle. From right triangles with the radius as hypotenuse, we have r^2=9^2+18^2 and r^2=x^2+(x+9)^2, so 2x^2+18x+9^2=18^2+9^2. Cancel out 9^2 from both sides, leaving 2x^2+18x-324=0. Divide by 2 to get x^2+9s-162=0, which factors into (x+18)(x-9)=0. Only x=9 is a positive length, so the green square has area 81.
@mega_mango Жыл бұрын
S = x², side = x Radius= 9√5 because of Pythagorean theorem (9² + 18² = R² = 405). 405 = x² + (9+x)² = 2x² + 18x + 81. x² + 9x - 162 = 0. Positive root of x = 9. x² = 81
@santiagoarosam430 Жыл бұрын
Mediante 3 giros de 90 grados aplicados al semicirculo y al cuadrado azul, obtendremos una cruz griega inscrita en el círculo completo, conformada por 12 cuadrados verdes; 2 en cada brazo y 4 en el cuadrado central, cruce de aquellos. Este cuadrado es igual al azul 》Área verde = 324/4 =81 Gracias y un saludo cordial.
@AmirgabYT21858 ай бұрын
S=81
@Copernicusfreud Жыл бұрын
Yay! I solved it. Area = 81 cm^2.
@rajbhadursingh8504 Жыл бұрын
We can also do it by using similarity ..
@firstteam134 Жыл бұрын
Just subtract the are of square from the area of the half of the circle, after using pyth. Thm.
@grandemika Жыл бұрын
We have immediately for simmetry and construction that AD = 1/2 EF So AD = 18/2 = 9 green area 81.
@AnonimityAssured Жыл бұрын
Symmetry is our friend here. Spoiler alert. It is obvious that if we imagine a point D', such that D'D is a line segment of twice the length of AD, lying parallel to EB, then D'D will have the same length as EF. Meanwhile, it is clear that AO must have the same length as EB. That means that the area of the green square is exactly a quarter of that of the blue square. We don't even need to calculate the square root of 324. We can simply divide it by four. 324 / 4 = 81 square units.
@arthurschwieger82 Жыл бұрын
Based on this problem, is there, or could you develop, a proof where two squares arranged like these would have an area relationship of 4 to 1? In looking at this, it would seem that no mater the radius of the circle, the relationship would stay the same.
@EmilMrSweFish Жыл бұрын
Yes! Call the area of the big square x^2, and the area of the small square y^2. Then the side lengths are x and y. We want to show that (x^2)/4=y^2, which is the same as showing that x=2y. The radius can be calculated in two ways with the Pythagorean theorem: r^2 = x^2 + (x/2)^2 (equation 1) r^2 = y^2 + (y+x/2)^2 (eq. 2) Set the equations equal to each other x^2 + (x/2)^2 = y^2 + (y+x/2)^2 x^2-y^2 = (y+x/2)^2 - (x/2)^2 Use the formula for difference of squares on both sides. (x+y)(x-y) = (y+x/2+x/2)(y+x/2-x/2) (x+y)(x-y) = (x+y)y x-y = y x = 2y QED
@marioalb9726 Жыл бұрын
Esto es un teorema!! SIEMPRE que se tiene esta configuración, el área del cuadrado menor es 1/4 del área del cuadrado central. SIEMPRE !!! Y el lado del cuadrado menor es 1/2 del lado del cuadrado central !!! SIEMPRE. Es un teorema, no se precisan hacer cálculos complicados !!!
@harikatragadda Жыл бұрын
A geometric solution can show that the small square side is half the big Square side. Reflect the semicircle to form a circle and using congruency, 2X= 18 X=9 Image here. kzbin.info/www/bejne/q3qriKOrapiZp6c
@himo3485 Жыл бұрын
Radius is √[9^2+18^2]=√405=9√5 side of Green shaded Square : x x^2+(x+9)^2=405 2x^2+18x+81-405=0 2x^2+18x-324=0 x^2+9x-162=0 (x+18)(x-9)=0 x >0 , x=9 9*9=81 area of Green shaded Square : 81cm^2
The sidelength of the blue square is 18, so half the side is 9. But you don‘t need to know that, the area of the green square must be 1/4th of the blue square (by symmetry) and is therefore 81.
@neuoylann1909 Жыл бұрын
You can see geometrically from the beginning that the big square is equal to four small squares therefore the area is 324/4 = 81 ! Just inscribe into the circle at the beginning four big squares and then the conclusion is obvious.
@폴리스다크아미-k5x Жыл бұрын
이번 내용은 볼 것이 없는게... 원 내부에 존재하는 정사각형의 넖이의 합은 원래 반지름의 제곱일 수 밖에 없어요. 어떻게 생겼어도 반지름의 제곱입니다. 차라리 이 이유를 얘기하는게 더 재밌겠네요.
@zawatsky Жыл бұрын
Я сразу заподозрил, что треугольники подобны. Возможно, то же значение 9 можно получить, доказав их подобие.
@vara1499 Жыл бұрын
Sir, you have gone about a long way to derive the side of the smaller square to be 9 units. From the figure. BC= 1/2 of BE, which is 18/2 = 9 units. This is a shorter to find the area of the smaller square, which is 9^2= 18sq units. 😊
@bentels5340 Жыл бұрын
How do you get that it's half from the picture? Not to scale, remember?
@vara1499 Жыл бұрын
@@bentels5340 well, it is very evident. Even he also makes assumptions in many problems that I viewed.
@bentels5340 Жыл бұрын
@@vara1499 But what is it evident from? Not to scale means you can't trust what it looks like...
@vara1499 Жыл бұрын
@@bentels5340 my assertion gets the same answer/solution. There are videos where the author thinks out of the box to find a solution. If my answer was different, then I am wrong. That's all .
@adgf1x Жыл бұрын
81cm^2
@kenShuttleworth Жыл бұрын
how do you conclude that both (x-9) and (x+18) have to both be equal to 0, as if only one was equal to 0, then multiplied together the result would be 0
@quigonkenny10 ай бұрын
Perhaps he misspoke. What you've determined once you factor it down to (x-9)(x+18)=0 is that either x=9 or x=-18 will get you a result of zero. You can see this by plugging either number back into the original equation or by looking at a graph of the equation, as the graph will cross the x axis at those numbers.
@Xyz-sd7ub Жыл бұрын
81 cm^ 2
@bentels5340 Жыл бұрын
Before watching the solution: Area Ab of the blue square = 324 cm² => side S of blue square = 18 cm Radius of semicircle r is from origin to one of the upper corners of the blue square => r² = 18²+9² r² = 405 = 9√5 From center of semicircle to upper left corner of green square is again r Let s = side of green square Then r² = s² + (s+S/2)² r² = s² + (s+9)² 405 = s² + s² 18s + 81 2s² + 18s + - 324 = 0 s² + 9s + - 162 = 0 (s + 18)(s - 9) = 0 s = -18 ∨ s = 9 Since the square is a physical object, its side cannot be negative, so s = 9cm So the area of the green square is 9² cm² = 81 cm² After watching: 👍
@prossvay8744 Жыл бұрын
Area green square=9×9=81cm^2
@harikatragadda Жыл бұрын
A geometric solution can show that the small square side is half the big Square side. Reflect the semicircle to form a circle and using congruency, 2X= 18 X=9 Image here. kzbin.info/www/bejne/q3qriKOrapiZp6c
@albertofernandez6861 Жыл бұрын
324cm²/4=81cm² is The area of Green squared.
@michiel2253 Жыл бұрын
Sorry I'm a bit of a math nitwit, but given that the green area is a square and adjacent to the blue one, and that D and E are on a circle with centre C, doesn't it simply follow that DC equals EC and as DC also equals CB. And therefore, she's a witch! I mean green is quarter of blue.
@mikefischer8067 Жыл бұрын
I don’t know why, but after looking it over for about 5 seconds I determined the area was 324/4. Weird!