This problem is best one yet for making observations and following through with pts. of tangency...circle theorem...Pythagorean theorem...area of circle formula too find radius...right triangle properties...comparing equations...rationalizing fractions ...and calculating area of circle. Awesome way to start a day! 🙂
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@redfinance3403 Жыл бұрын
Thanks for posting! Solved this one 😊 using the relationship : (2+r)^2 = 2(2-r)^2
@PreMath Жыл бұрын
Thank you! Cheers! 😀
@thewolfdoctor761 Жыл бұрын
I created a triangle OPF, where F is on the line OQ, and PF is perpendicular to OQ. r is radius of yellow circle. So (2+r)^2 = (2-r)^2 + (2-r)^2. Solve for r , etc.
@PreMath Жыл бұрын
Thank you! Cheers! 😀
@Abby-hi4sf Жыл бұрын
As usual, it is pleasant to see how you are teaching different methods!
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀
@marioalb9726 Жыл бұрын
Blue Area= ½ π R² = 2π cm² R² = 4 R = 2 cm Equalling over diagonal OA: R + r + r/cos45° = R / cos45° r (1 + 1/cos45°) = R (1/cos45° - 1) r = R (√2-1) / (1+√2) r = 0,343 cm Area = π r² Area = 0,37 cm² ( Solved √ )
@santiagoarosam430 Жыл бұрын
Área azul =2Pi》Radio azul =2 》ABCD rectángulo de 4×2》Potencia de A respecto a la circunferencia azul =2×2 =r(1+sqrt2)(2+2sqrt2)》r=6-4sqrt2 》Área amarilla =68-48sqrt2 =0.117749 Gracias y saludos.
@MrPaulc222 Жыл бұрын
Great explanation. I need to go through this again more slowly. Without the video I got as far as (2+r+r*root2)^2=8, but went off in a wrong direction after that.
Blue Area= ½ π R² = 2π cm² R² = 4 R = 2 cm Equalling over line OP: R + r = (R -r) / cos45° R + r = √2 (R-r) R + r = √2 . R - √2 . r r + √2 r = √2 R - R r ( 1+√2) = R ( √2 - 1) r = R (√2-1) / (1+√2) r = 0,343 cm Area = π r² Area = 0,37 cm² ( Solved √ )
@amitsinghbhadoriya6318 Жыл бұрын
Thanks 👍
@PreMath Жыл бұрын
Thank you too
@musicsubicandcebu1774 Жыл бұрын
Draw tangent thru T then calculate radius of in-circle of resulting right triangle using (AT+AT - hypotenuse)/2
@ybodoN Жыл бұрын
Generalized: Y = 2B (17 − 12√2) where Y is the area of the yellow circle and B is the area of the blue semicircle.
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@KAvi_YA666 Жыл бұрын
Thanks for video.Good luck sir!!!!!!!!!!!!!
@PreMath Жыл бұрын
Thank you too
@vidyadharjoshi5714 Жыл бұрын
DO = 2. Let PT = r. AP = r*sqrt2. AT = r + r*sqrt2 = 2*sqrt2 - 2. r = 2/(3+2*sqrt2) = 0.343. Yellow Area = 0.37
@unknownidentity2846 Жыл бұрын
The line through O and Q and the line through E and P intersect at point R. Then the triangle OPR is a right triangle and we can use the Pythagorean Theorem in the following way: (2−r)² + (2−r)² = (2+r)² 2(2−r)² = (2+r)² √2(2 − r) = 2 + r # r < 2 ⇒ 2 − r > 0 and 2 + r > 0 2√2 − r√2 = 2 + r 2√2 − 2 = r + r√2 2(√2 − 1) = r(√2 + 1) r = 2(√2 − 1)/(√2 + 1) r = 2(√2 − 1)² r = 6 − 4√2
@PreMath Жыл бұрын
Thank you! Cheers! 😀
@Patrik6920 Жыл бұрын
Nice to see an update to the earlier one... keep going.... maby u should take that one down or write an disclamer (its the one with incorrect tangent assumptions)
@PreMath Жыл бұрын
Thank you! Cheers! 😀
@kxllxr Жыл бұрын
I solved it in a different way. OT is a radius: pi*R^2/2=2 cm. I connected points O and Q. Then I calculated a diagonal of the square ODAQ using this formula: d=sqrt2*a=sqrt2*OQ. OQ is a radius as well as OT and equaled to 2 cm. So, OA is equalled to 2*sqrt2 cm. Then TA is OA-OT=2sqrt2-2 which is approximately 0.8284 cm. EPFA is a square, point P is a center of the yellow circle (2 tangent theorem, so EA=EF and EP=PF as radius). So, AP is a diagonal of EPFA and it equals to sqrt2*r. TP is a radius of the yellow square. AT=AP+TP= sqrt2*r+r=r(sqrt2+1)=0.8284 cm. r=0.8284/(sqrt2+1)=0.3431 cm. And the final step: A(yellow circle)=pi*r^2=3.14*0.1177=0.37 square cm.
@Shsbzyqn123 Жыл бұрын
Nice way of explanation
@redeyexxx1841 Жыл бұрын
Is there any way to prove that the linr joining the 2 centres passes through point A??
@pranavamali05 Жыл бұрын
👌👌
@PreMath Жыл бұрын
Thank you! Cheers! 😀 You are awesome. Keep it up 👍
@soli9mana-soli4953 Жыл бұрын
I try to solve considering the diagonal of AQOD square that is 2√ 2) and that one of AFPE square that is r√ 2, then r√ 2 = 2√ 2 - 2 - r r = (2√ 2 - 2)/(√ 2 + 1)
@devondevon4366 Жыл бұрын
0.376 cm^2 answer The circle's radius is 2 since its area is 4 pi (twice the semi-circle.) Let's label the yellow circle's center r. From the center of this circle to A is the hypotenuse, h. h^2 = r^^2 + r^2 (Pythagorean) Hence h^2 = 2 h= sqrt 2r^2 or 1.41 r The distance from thethe center of the yellow circle to where its touches the blue semi-circle is also r. Hence the distance from A to where it touches the blue is 2.41 (1.41 r + r). Hence the distance from that to the center of the blue cirlce is 2.41 r + 2 . Construct a triangle using 2.41r + 2 as the hypotenuse; hence the other two sides are 2 and 2 ( the cirlce's radius) Using Pythagorean (2 + 2.41 r )^2 = 2^2 + 2^2 5.8081 r^2 + 9.64 r +4 =8 5.8081 r^2 + 9.64 r -4 = 0 r = .34376 Circle area hence is 0.376 cm^2
@marioalb9726 Жыл бұрын
Blue Area= ½ π R² = 2π cm² R² = 4 R = 2 cm Pitagorean theorem: (R+r)² = 2.(R-r)² R²+2Rr+r² = 2 . (R²-2Rr+r²) R²+2Rr+r² = 2R²- 4Rr + 2r² r²- 6Rr +R² = 0 r²- 12r + 4 = 0 r = 0,343 cm Area = π r² Area = 0,37 cm² ( Solved √ )
@mohanramachandran4550 Жыл бұрын
πR² ÷ 2. = 2π² R. = 2 cm Diameter of the Rectangle = 2 * √2 Yellow circle area = ( 2 √2 -- 2 ) Radius of yellow circle = r r = (2√2-2) ÷ (1+√2) = 0.34314575 Area of the Yellow circle = πr² Area = Π × ( 0.34314575)² Area = 0.36991941250
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@raya.pawley356310 ай бұрын
Thank you
@quigonkenny9 ай бұрын
Let R be the radius of the large blue semicircle and r be the radius of the small yellow circle. As T is tangent both to Semicircle O and Circle P, points O, T, P, and A are colinear. Therefore ∆AFP and ∆AQO are similar. Triangle ∆AQO: a² + b² = c² R² + R² = OA² OA² = 2R² OA = √2R² = R√2 OA = OT + TA R√2 = R + TA TA = R√2 - R = R(√2 - 1) ---- (1) Triangle ∆AFP: PA/AF = OA/AQ PA/r = R√2/R = √2 PA = r√2 TA = TP + PA TA= r + r√2 = r(1+√2) ---- (2) r(1+√2) = R(√2 -1) r = R(√2 -1)/(1+√2) ---- (3) Semicircle O: A = πR²/2 2π = (π/2)R² R² = 4 R = 2 Circle P: r = R(√2 -1)/(1+√2) r = 2(√2 -1)/(1+√2) r = 2(√2 -1)(1-√2)/(1+√2)(1-√2) r = 2(√2 -1)(1-√2)/(1-2) r = 2(1-√2)(1-√2) r = 2(1 - 2√2 + 2) r = 2(3-2√2) A = πr² = π(2(3-2√2))² A = 4π(9-12√2+8) A = 4π(17-12√2) ≈ 0.37 cm²
@williamwingo4740 Жыл бұрын
Nothing new to add this time: did it pretty much the same way, right down to rationalizing the denominator. Maybe we're beginning to think alike.... 🤠
@vierinkivi Жыл бұрын
Pisteestä A sinisen täydennetyn ympyrän ulkolaitaan 2√2+2,keltaisen ulkolaitaan 2√2-2. Keltaisen ala ((2√2-2)/(2√2+2))^2*4π
@gelbkehlchen Жыл бұрын
Solution: R = radius of the blue circle, r = radius of the yellow circle. It shall be: π*R²/2 = 2π |*2/π ⟹ R² = 4 |√() ⟹ R = 2 ⟹ Pythagoras: (R-r)²+(R-r)² = (R+r)² ⟹ (2-r)²+(2-r)² = (2+r)² ⟹ 4-4r+r²+4-4r+r² = 4+4r+r² |-4-4r-r² ⟹ r²-12r+4 = 0 |p-q-formula ⟹ r1/2 = 6±√(36-4) = 6±√32 = 6±4*√2 ⟹ r1 = 6+4*√2 > R = 2 [that cannot be] and r2 = 6-4*√2 ≈ 0,3431 < R = 2 [that is o.k.] ⟹ area of the yellow circle = π*r2² = π*(6-4*√2)² = π*(36-48*√2+32) = π*(68-48*√2) ≈ 0,3699[cm²]
@PreMath Жыл бұрын
Thank you! Cheers! 😀
@misterenter-iz7rz Жыл бұрын
First note that 2 is the radius of the large circle, let r be the radius of the small circle, then 2root2=2+2r, r=root 2-1, the,answer is (root 2-1)^2pi=(3-2root2)pi=0.539 approximately. 😊 Oh, I make a mistake, 2root2=2+r+(root 2)r, so r=(2root 2-2)/(1+root 2)=(2root2-2)(root2-1)=2(root2-1)^2=2(3-2root2), the answer should be 4(3-2root 2)^2pi=4(17-12root2)pi=0.37 approximately. 😅
@krislegends Жыл бұрын
You can't do 2r, because the radius doesn't extend all the way to
@PreMath Жыл бұрын
Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@Algebronic_Animations24 Жыл бұрын
7:26 why OA is not equal to only 2+ r√2
@prollysine Жыл бұрын
Hi, large circle radius R=2 cm, let r=small circle radius, large circle center point to square corner distance with the circular R, r,: R+r+sqrt(2)*r = sqrt(2)*R --> 2+r+sqrt(2)*r = sqrt(2)*2 , r*(1+sqrt(2))=sqrt(2)*2-2 , r=(sqrt(2)*2-2)/(1+sqrt(2) =~ 0,3431 cm , small circle area = r^2*pi , T = (0,3431^2)*pi = 0,3699 cm^2 , ok ...
@mohamedgamal-ze1gb Жыл бұрын
سؤال إذا كانت مساحة الدائرة تساوى ٢باى فنصف القطر يساوى جذر ٢ باى وليس ٢ ارجو التوضيح
@PreMath Жыл бұрын
معطى: مساحة نصف الدائرة 2pi. لذا ، مساحة الدائرة الكاملة ستكون 4 نقطة في البوصة. هتافات
@mohamedgamal-ze1gb Жыл бұрын
@@PreMath اسف عرفتها بعد كتابة التعليق وشكرا على التوضيح
@devondevon4366 Жыл бұрын
0.376 cm^2
@thomakondaciu6417 Жыл бұрын
A=0.36×3.14
@adgf1x Жыл бұрын
Ar small circle=pi/2when pi =22/7
@marioalb9726 Жыл бұрын
Blue Area= ½ π R² = 2π cm² R² = 4 R = 2 cm Equalling over diagonal AT : r + r/cos45° = R/cos45° - R r + √2 r = √2 R - R r ( 1+√2) = R ( √2 - 1) r = R (√2-1) / (1+√2) r = 0,343 cm Area = π r² Area = 0,37 cm² ( Solved √ )