At 18:25 I wrote R_3(3) instead of R_2(3). That was a typo.
@nicolasazzolini22183 жыл бұрын
Would that mean the factorial is 3! and |x-4|^3 rather than the ones in the video?
@MathforThought3 жыл бұрын
@@nicolasazzolini2218 Correct. The answer is still right though.
@BrunoSilva-oz5es4 күн бұрын
why choose such a hard deritive for the first problem?
@pear36633 жыл бұрын
For example 2; when finding the third term of the Taylor series to use in the A.S.E.T., why do we neglect the (x-4)^3 part of the third term and just put f'''(4)/3! for b_3?
@MathforThought3 жыл бұрын
We just care about the coefficent.
@artart4213 жыл бұрын
For example 2, shouldn't it be |R2(5)|
@MathforThought3 жыл бұрын
No. You need the largest possible value of M. That occurs at 3. Not 5.
@artart4213 жыл бұрын
For the ASET on example 2, why did we go with f^4(4)?
@MathforThought3 жыл бұрын
But I didn't... I did f'''(4).
@harshkothari57383 жыл бұрын
So to calculate the highest value for M we try to find critical numbers for that and also evaluate at the ends of the intervals but my question is that if the critical point is not in the interval shouldn't we ignore it anyway?
@MathforThought3 жыл бұрын
It should be included. Otherwise it makes so sense to check the interval.
@harshkothari57383 жыл бұрын
@@MathforThought so first we check the critical point and if it is continuous on there, we use that even if it isn't in the interval correct?
@MathforThought3 жыл бұрын
@@harshkothari5738 Sorry can you clarify? If the critical point isn't in the given interval, you don't use that.