Timeline of Assumption of linear regression 0) 00:51 Introduction 1) 01:58 Linear relationship (between all the independent and dependent features) 2) 04:25 No multicollinearity (between independent features) 3) 11:37 Normality of residuals (Distribution of residuals should be normal) 4) 13:15 Homoscadascity (residuals and predicted values should not have any pattern ) 5) 15:32 No autocorrelation of residuals
@tanjulgohar52 жыл бұрын
Sir aapse accha koi nhi samjha sakta ❤️
@kunikakhobragade69532 жыл бұрын
Sir aapne bohot hi badhiya padhaya ....after watching a lot of videos but not founded a video like this ....now i understood the concept only by you ...ty
@laxminarayangaidhane71162 жыл бұрын
Sir if possible make video on AUC ROC curve...and thank you for making this video
@shahidafreedy4 ай бұрын
I truly appreciate your explanation; it's been incredibly helpful. Thank you very much, sir!
@anujsinghkushwah27122 жыл бұрын
thanku bhai the most "to the point" and easiest explained video in youtube.
@prateeksrivas89 Жыл бұрын
Very Helpful Video for people who grasp a concept from fundamentals. Very intuitive with practical implementation.
@jashneetkaur3176 Жыл бұрын
Yours videos are very well explained ,Thank you soo much Sir for giving the knowledge. You are the best teacher ever
@lothalopolis Жыл бұрын
1:44 During train_test_split, the rows of the data are randomly ordered (unless you set a parameter not to reorder, which is not set here). Because of this, the residuals at 16:08 will always show no auto-correlation even if it was, as the order is jumbled up.
@shreepalpawar94372 жыл бұрын
Sir,ur teaching skills is very awesome ❤️It was much helpful for me Thanku 💐🎉
@rajshekharrakshit90582 жыл бұрын
This is what content is. I hope you will give deep understanding on other topics too
@ishuraj74072 жыл бұрын
The only video on YT that explains assumptions of alogorithm. Thank you so much sir this video was a great help. Sir, can you please make videos like this for other alogorithms also.
@deepakalur56036 ай бұрын
This Question has been asked in Turing data scientiest interview Sir, thank you so much.
@aravindhgowtham820017 сағат бұрын
I am not sure if multicollinearity is a strict assumption. Multicollinearity does not have any effect on the predicitons, it only effects your coefficients. So, if inference (interpreting coefficients) is important to you, then multicollinearity is an issue. If not, it is not big of an issue. Correct me if I am wrong.
@NidhiSingh-24119 ай бұрын
One of the best and quick video I have seen
@unitedpakistan85169 ай бұрын
Thank You Sir, the way you make us understand is really great... Love From Pakistan 💖
@vikaskadam98422 жыл бұрын
Great explanation sir,simple illustrated by example
@NishaSharma-se1js Жыл бұрын
Thank you for this wonderful information🎉
@divyanshusharma457610 ай бұрын
Hi Nitish there is one more assumption for this our response variable should be normally distributed please explain thats why we use GLM
@sachin27252 жыл бұрын
Dude, you are really a genius......excellent explaination
@kumuddandale15814 күн бұрын
in first assumption of linearity how will you check linearity of categorical predictor with target
@biswasshubendu42 жыл бұрын
ON THE POINT!!!!! VERY IMPORTANT INFORMATION REGARDING INTERVIEWS
@arfapathan1832 Жыл бұрын
you simplified the concept..Thank youuuuu
@ParthivShah8 ай бұрын
Amazing Knowledge Sir.
@nikhilbansal855 Жыл бұрын
In both assumptions 3 (normal residual) and 5 (autocorrelation) , we are plotting residuals, How come assumption 3 says it is normally distributed but 5 says there is not relation?
@learnwithajmal88299 ай бұрын
sir videos is very good , sir we need a videos for that case if assumption not satisfy how we can use remedy of these assumption in python
@nilkantgudpale195910 ай бұрын
thank you clearly explained the concepts
@sourabhagarwal48522 жыл бұрын
Good Video on Assumptions of Linear Regression🙂
@DataScienceWithAkesh11 ай бұрын
Sir i am facing a bimodal residual issue or problem dont know what to say. Even my teacher dont helped me in that. Can you give some points or anything
@619vijay7 ай бұрын
Thank you. Very helpful
@rachitsingh49132 жыл бұрын
Hello Sir, As always this video is also amazing no doubt about that. But in this video you only explained How to check the assumptions. But what if the assumption is not hold than how to tackle them ?? Like what are the processes in order to convert the data so that it holds all assumptions. please make video on that and explain that.. Thankyou Sir
@because202210 ай бұрын
Very nice explanation❤
@shalinigoud8022 жыл бұрын
Thanx for clear explanation it was quite informative
@srkandekar Жыл бұрын
Thankyou Sir. I will reference this content.
@ge58502 жыл бұрын
Its very very good lecture sir thanks a lot
@datamatrix202 жыл бұрын
Please make video on how to overcome each assumption if it is invalid
@abhaykumaramanofficial2 жыл бұрын
Thanks you for simple and great explanation
@ajaychinni314811 ай бұрын
The only missing thing was the "why" Why do we need these assumptions of linear regression. You only explained Multicollinearity would have been perfect if explained for all.
@monalishasahu1276 Жыл бұрын
Very well sir, thank you so much 😊
@xploramit Жыл бұрын
Hi sir, The 1st assumption of linear regression is that the equation should be linear in parameters and there is no restriction on how x and y are related. But u showed in ur video that if there is non linear relationship between x and y then the equation doesn't holds the assumption which I think is not right.
@shahilgourisaria23362 жыл бұрын
Very nice explanation sir
@ParthivShah8 ай бұрын
Thank You Sir.
@balrajprajesh64732 жыл бұрын
Best teacher ever!
@shivarajnavalba50422 жыл бұрын
great explanation... thank you! 😇
@sumjakar2 жыл бұрын
Nice video sir Thank You So Much
@anirbansen9285 Жыл бұрын
Excellent content Sir but I have a doubt. Residual should be bell-shaped then how it's not holding any auto-relation correlation?
@Keep_Laughfing2 жыл бұрын
Same Question asked me. Can you explain all assumption of all algorithms?? Plz sir that will be very helpful for us. 🙏🙏🙏🙏
@ashvinibhuskade62502 жыл бұрын
Nice video sir.., the no autocorrealtion assumption is only for linear regression or it is applicable for other algorithms
@nikhilgupta48598 ай бұрын
Sir apne btaya how to check linearity, but ye nahi btaya agar non linear h to krna kya h
@diwakargupta02 жыл бұрын
Sir in Autocorrelation of Residuals if we sort the data then it will also follow some pattern. This plot depends on the order of input and we can pass input in any order. btw great video. Thanks
@sumansamantaray48862 жыл бұрын
Sir, aapne bataya tha January me NLP ka playlist khatam hoga ! Abhi June khatam hone wala hai 😞
@shortflicks83Ай бұрын
Great video
@namanmodi75362 жыл бұрын
deep learning video sir!
@harshithasuri6632 жыл бұрын
Conceptually what does auto correlation of residuals represent? You explained nicely why there should not be a correlation b/w Independent variables. But I didn't understand significance of no-auto correlation assumption for residuals
@vijaylaxmilendale33992 жыл бұрын
1. Linear relationship between input and output 2. No multi collinearity 3. Normality of residual 4. Homoscedasticity 5. No auto correlation in residual
@pankajbhatt83152 жыл бұрын
Nice explanation
@yagnikposhiya70192 жыл бұрын
Great Explanation.. But can you please make a video on detail explanation of autocorrelation and homoscedasticity??.. Thank You
@Compact18 Жыл бұрын
What if these assumptions get violated ?
@pratikghodke79832 жыл бұрын
good one sir
@jyotsanagour850 Жыл бұрын
Well Explained
@shadiyapp5552 Жыл бұрын
Thank you sir ♥️
@harshmankodiya93972 жыл бұрын
hello there. As u said these are the assumptions in LR and a candidate who is not aware of these is judged. But the thing is, from where can one read about such concepts?. Can you please suggest some books with solid ml fundamentals as there is a lot of ambiguity about concepts in ML books and not every book talks in depth about these algorithms.
SIR how can I join your online 6 month Ml &AI COURSE?PLEASE REPLY SIR.Thank you🙏🏻
@reshubathla8138 Жыл бұрын
Very nice ...
@ShubhamVerma-wf3vc2 жыл бұрын
Thanks jitu bhaiya.
@vivekpawar18542 жыл бұрын
Sir how to handle multicollanirity??? should we drop one column???
@tanmay_efootball2 жыл бұрын
yes , we have to drop (highly i think )
@ritujawale102 жыл бұрын
Thnks you sir... 👍
@ishandandekar18082 жыл бұрын
Sir please keep making Deep learning videos for the 100 days ml playlist
@SaranRavali8 ай бұрын
It would have been a good video , if the reasons behind these assumptions is well explained. the reasons behind the Normal Residual, Homoscedasticity, No Autocorrelation of Error are not explained. how does these assumptions impact the model is not explained. Thanks for explaining the meanings of these errors with examples.
@gauravsharma-sd2mg2 жыл бұрын
Awesome 👏
@shrinathjagtap67032 жыл бұрын
Make video on What to do if these assumptions get violated
@ashutoshthokare212710 ай бұрын
Thank u sir
@krishnab64447 ай бұрын
NIcely Explained
@debatradas1597 Жыл бұрын
thank you so much sir
@thethreemusketeers45002 жыл бұрын
sir plz Deep Learning and NLP ki playlist complete kr do.
@viralvideoa2 жыл бұрын
Thankyou sir 🙇
@teenagepanda89722 жыл бұрын
Thank you sir
@navtojsingh9 ай бұрын
bravo!
@partharora60232 жыл бұрын
amazing sir
@rafibasha41452 жыл бұрын
Thanks bro
@rahulaher38742 жыл бұрын
thank you sir , apne iski githhub link di hoti to time save hota hamhara...
@Vipulghadi2 жыл бұрын
thanks sir
@ParasProgramming1232 жыл бұрын
Can you make tutorial on deep learning
@campusx-official2 жыл бұрын
100 Days of Deep Learning: kzbin.info/aero/PLKnIA16_RmvYuZauWaPlRTC54KxSNLtNn
@ParasProgramming1232 жыл бұрын
@@campusx-official thank you sir. Sir is macbook air m1 good for such work such as ml and dl I am watching your 100 days of machine learning and reached day 3 because it been only 3 days of me starting this new journey
@ninderjoshi73842 жыл бұрын
I would suggest you to explain why linear regression assumes, normal residuals, homoscdacitiy and no correlation between/w residuals/independent variables. That will help make your channel different from others because it will help your audience understand the concept better. The things you have explained, anyone can explain it, but only a handful number of people explains "why"
@arun53512 жыл бұрын
You can explain the reasoning behind it. Others can also chip in. Nitish can correct our understanding if there are any gaps.
@iftikhar58 Жыл бұрын
Thank Men
@vishnupsharma507 ай бұрын
You should actually rectify yourself. The linear assumption is never about straight line... it is linear in estimation parameters. y= k x^2 is also linear regression. Please correct.
@jams6279 Жыл бұрын
🎉🎉🎉
@tanmaythaker2905 Жыл бұрын
LR No multicollinearity Normality of residuals Error should have constant variance No auto correlation of errors
@rajatchauhan44106 ай бұрын
but why these assumptions??
@DarkLord79799 Жыл бұрын
nice
@Dyslexic_Neuron Жыл бұрын
Wasted 19 minutes . You should explain the reason for having these assumptions
@surajvishwakarma4534 Жыл бұрын
🤡🤡
@pratiknaikwade95 Жыл бұрын
agar result 1 se 5 ke bitch mai aarahe ho to "multicolinearity hai ya nahi"???????🤨🤨🤨🤨🤨🤨🤨🤨🤨🤨🤨🤨🤨🤨🤨🤨🤨🙄🙄🙄🙄🙄🙄🙄🙄🙄