I purchased a data science course with around 50k fees but even that they are not teaching this level education. You are such fabulous person.. 👍
@indra-zd9zu5 ай бұрын
50K pani main gaye chapak
@nrted38774 ай бұрын
bhai 50k ka koi course khardta hai kya koi
@shubhamkumar-hx1fb2 ай бұрын
@@nrted3877 50k dekar course liya hai...arey itna paisa de kaise diya mujhe to ye smjh nhin aa raha hai
@mahasinprodhan43222 ай бұрын
Bro is it a playlist of machine learning or data science? I am Little bit confused.pls reply
@manishsirwal98812 ай бұрын
@@mahasinprodhan4322 Machine Learning ka hai. Data science mein jo data prepare kara jata hai wo hi data aage Machine learning ke liye use hota hai. Machine learning wale ko data engineer, data analyst and data scientist teeno ka kaam aana chahiye. Isliye playlist mein sab ka mix hai aesa keh sakte hai
@a1x45h3 жыл бұрын
wow I was so confused about column transformer and why everyone is using that. I was so confused. People usually include that in the encoding videos without any explanation. You are the first person to explain it separately in your series. I am amazed. Thank you Nitish, I will remember you throughout my journey.
@mridang20642 жыл бұрын
Never knew about Label encoder and Ordinal encoder, I used to apply label encoder on input features, thanks for this hidden insight Nitish Sir.
@atharabbas993-s4x2 ай бұрын
Aik dil ko kitni bar jeetogi. Love and respect Sir
@peacelilly220020 күн бұрын
I was confused about encoding. After watching your videos, I am like, I know when to use what. You are simply Awesome. Thank you.
@paragvachhani46432 жыл бұрын
Sir kya bolo...just itna hi U r doing great job...with quality conceptual clearity...
@KashifAli-ye1zh4 ай бұрын
best teacher on youtube respect to data science
@hamzayaseen99635 ай бұрын
This is a great channel. I'm glad I found it. Thank you so much, Sir, for making this so simple.
@osho_magic2 жыл бұрын
M first time comment kar rha ,, Kosi channel p because info is really precious ,,, quality bole to Nitish sir
@sneharj20362 жыл бұрын
Thanku so much for clearing concepts of encoding technique with example. Very helpful n informative video.
@arhaanahmad39535 ай бұрын
Well explained. This really helped me to improve my understanding of ML. Thank you sir.
@ajaykushwaha42333 жыл бұрын
Best explanation ever 🙏🏻
@santanubag358 Жыл бұрын
You And Krish Naik Sir are the Brahma And Bishnu Of Data Science.
@rahulsah5918 Жыл бұрын
Right sir
@a_wise_person Жыл бұрын
The way you teach is amazing sir , i was trying for months to learn ML , finally i am glad that i found you .
@muhammadtayyabtahirqureshi7186 Жыл бұрын
explicit and to-the-point 👍
@siyays18682 жыл бұрын
Thanku so much for clearing encoding concepts. Very good explaination with example.
@arpittrivedi66362 жыл бұрын
Kabhi-2 main sochta hu agar aap nahi hote to hamara kya hota. Great explanation
You are great efforts 👌 a appreciate you god bless ❤
@zkhan20233 жыл бұрын
Sir, you are doing a great job
@alimuiz53285 ай бұрын
Thank you for the great video, sir. I wanted to ask wouldn't it be better to encode the data before splitting it? This way we don't have to transform the train and test sets individually.
@yogeshsapkal25932 жыл бұрын
sir hamane classes karake bhi hamko yeh concept nahi sikhaee...thank you sir
@marikhalid64745 ай бұрын
you are great bro bestest video content
@geethanshr7 ай бұрын
At 16:29 why didn't we convert our transformed numpy array to dataframe?
@_Mahesh-nh7xv7 ай бұрын
Best explanation ever
@priyankakasturiaАй бұрын
my training data has some categorical and some numerical columns, and the prediction I want to make will be a numerical column. So, can I use this method for the same? If not, then what should I use for encoding for data with categories like this: (['Indoor climbing', 'Run', 'Strength training', 'Swim', 'Bike', 'Dancing', 'Stairclimber', 'Spinning', 'Walking', 'HIIT', 'Outdoor Bike', 'Walk', 'Aerobic Workout', 'Tennis', 'Workout', 'Hike', 'Zumba', 'Sport', 'Yoga', 'Swimming', 'Weights', 'Running']) I previously tried one-hot-encoding, but then the dimensions for training and testing datasets became different. So, what do you suggest??
@sumitb20152 жыл бұрын
Excellent explanation 👍
@PratikJadhav-m3h Жыл бұрын
You Are Really Great Sir
@yashwardhansaxena27502 ай бұрын
I have a question, if we apply encoding as above, lets say we get 0,1,2 for poor,average,good in the X variable. here, while fitting the model, good will have double the impact as compared to average, but it is also possible that the impact can be more or less than double. Please help me with this
@MuhammadShahab-lf6gb11 күн бұрын
Sir if the target variable is ordinal then ? Same Label Encoder will be used ?
@PriyanshBansal-h6b3 ай бұрын
16:28 is there any change in the syntax of transform function also can you give me the new syntax
@tusharkhatri57952 жыл бұрын
I have one doubt during train test split we are fitting on training data while transforming both training and testing suppose this was standardization case then if we fit of train data we get mean and variance of that how can we transform test data using this train data mean and var . I just mean test data should be independent of train data there shouldnt be any type of relationship between them to prevent data leakage . So we must calculate seperate mean and variance for both train and test and fit tranform individually? Pls clarify
@kushagalashravanthi-go3sg Жыл бұрын
Super explanation sir❤
@Sumitrawat1122 жыл бұрын
can we perfom label encoding and oridinal encoding before train test split
@devilsworld72997 ай бұрын
one quick question sir we can do this isntead of these sklearn function this way we can arrange and give orders to our data and its fast too easy to understand instant output df.education[df['education'] == 'School'] = 0 df.education[df['education'] == 'UG'] = 1 df.education[df['education'] == 'PG'] = 2 df.review[df['review'] == 'Poor'] = 0 df.review[df['review'] == 'Average'] = 1 df.review[df['review'] == 'Good'] = 2 df.purchased[df['purchased'] == 'Yes'] = 1 df.purchased[df['purchased'] == 'No'] = 0
@positivevibes27145 ай бұрын
Instead of doing this you can use pandas Map function it'll do same thing
@numberandfacts61744 ай бұрын
But when so many categories then instead of this sklearn do fast and easily
@evergreenonce54562 жыл бұрын
11:18 *Encoding to Categorical Features*
@narendraparmar1631 Жыл бұрын
Great Content Thank You😀
@WAMIQMUSHTAQ-p9f10 ай бұрын
Hello sir, which lecture has the introduction to sk learn library?
@Aditi24952 жыл бұрын
recommend these tutorials to aspiring data scientist
@signup-rr7xw13 күн бұрын
label encoding is used for oridinal data ya nominal data?
@SACHINKUMAR-px8kq Жыл бұрын
Thanks Sir for this Amazing Session
@talkswithRishabh2 жыл бұрын
Too good content sir it is helping me alot
@promitdutta3029 Жыл бұрын
why label encoding can't used to transform input columns ?
@HimanshuSharma-we5li2 жыл бұрын
It would be great if there is dataset link in aal the videos.
@manikantareddy298 Жыл бұрын
What if there are null values in education column and then how should we start the process?
@ParallelUniverse550 Жыл бұрын
In label encoding how would the object know whether to map 0 to 'NO ' and 1 to 'YES'. As we didnt specify.
@MayurDubey-x9n Жыл бұрын
Does it matter if the output column is ordinal or nominal before applying label encoding? How to do encoding of categorical feature column with high cardinality? Please help me
@arman_shekh973 жыл бұрын
maine socha ajj video nhi ayegi but thank you
@maramreddysrikanth5464 Жыл бұрын
when ordinalencoding or onehotencoding done using coloumn transformer the output array columns index are changed i mean encoding done on 5th coloumn after tranformation it is appering to be 1st in array after transformation any solution
@sandipansarkar92112 жыл бұрын
finished watching and coding
@lol-ki5pd6 ай бұрын
oe = OrdinalEncoder(categories=[['Poor','Average','Good'],['School','UG','PG']]) when we have this already defined, so why we need to do oe.fit(X_train) I mean, how will it acutally help when all the calculation was done on oe in first line?
@adityaaware98443 ай бұрын
Did you get this answer?😅
@saakshidikshit10 ай бұрын
Can somebody explain me what order should be followed while doing any ML Project. Like whether feature scaling should be applied first or encoding categorical data should be done etc. Would be extremely grateful if someone can please clarify. Thanx.
@mohitkushwaha89742 жыл бұрын
Doubt 1. Can't we use ordinal encoding and label encoding before X train and Xtest split???? It would have been an easy task to do the encoding before its split. 2. Cant we use replace function of pandas like replace yes and no to 1 and 0, and replace poor , avg and good to some value like 0, 1 2
@kamilshaikh16022 жыл бұрын
what to do if the number of features are high (ordinal ones)? I have 40 such features
@satyampandey86503 жыл бұрын
Sir then which encoder we should apply on feature which are not ordinal
@piyushnirwan62983 жыл бұрын
don't we have to convert the array output in dataframe after transformation is done
@campusx-official3 жыл бұрын
Not required
@shreejanshrestha19313 жыл бұрын
I think sir did in previous videos just be make us visualize the numpy array into the better form.
@150_AmitMaji11 ай бұрын
sir plz make a video on high cardinality categorical value
@sid_x_18 Жыл бұрын
Why do we even do Label Encoding on target column . I mean that is essentially just 0s and 1s right ? So why we just can’t create dummies ? What’s the logic behind using Label Encoding here ?
@ajitchaturvedi40522 жыл бұрын
Please make one vedio on neural architecture search
@saumyashah66223 жыл бұрын
"Whenever we are doing a project, instead of train_test_split, we should always do k-fold cross validation." Sir, is my thinking correct ?? If wrong, please rectify me.
@campusx-official3 жыл бұрын
Yes, or some other form of cross valuation
@akshatbhoir1072 Жыл бұрын
Sir if there are yes/no data in data then which encoding should be used? Please clear my this doubt
@arshad17813 жыл бұрын
zy sub samjh aey gia but need a video after Encoding us py Analysis kesi kry ge aur fine result ko kesi again male female or yes and no mi change kry gy, after 2 or 3 video bad uni video py practical project video bi bny, problem zy ha transform data ho gye ab usi py analysis kesi kry? final output kesi pta chly zy male ha?
@tarunchauhan23392 жыл бұрын
in ordinal encoding an error is raised: Shape mismatch: if categories is an array, it has to be of shape (n_features,) can any one resolve please
@meenalpande Жыл бұрын
Nice explanation
@kingR-p6n4 ай бұрын
ValueError: Shape mismatch: if categories is an array, it has to be of shape (n_features,). Im getting this error after I run oe.fit(X_train) can any one help me to solve this problem
@taruchitgoyal3735 Жыл бұрын
Hello Sir, Thank you for the session. Can we extend concept of ordinal encoding on numeric column such as Age? Like in your dataset at 11.45, the values of column Age are: - 98, 16, 53, 69, 77. With more number of records we will have more number of distinct values under the column and at maximum we can have 100 values. Thus, if we classify the numeric values into categories will that not help to make our data analysis and ML model better? For example: We can have a category: Teenager for all Age values from 13 to 19., College students: 20 to 23, Young professionals: 24 to 30, Mid age: 31 to 65 and Senior citizen: 66 to 99. And then finally apply Ordinal encoding on these categories since now we will have order among the classified values. It would be very helpful sir to seek your views on the above. Thank you
@ajaykushwaha-je6mw3 жыл бұрын
I got he concept but all information are in array, do we need to convert them into DF and merge to proceed further ?
@campusx-official3 жыл бұрын
Instead you can use a transformer
@darshedits1732 Жыл бұрын
sir csv file are not download please help me urgent
@subhajitdey4483 Жыл бұрын
Sir what will happen if the output is categorical data but nominal, should I apply Label Encoding there also...?? Actually I want to say that If the output data is categorical, may be that Nominal / Ordinal, in both of case should I apply Label Encoding....?? Thank you for this video🙂
@subhajitmaji7522 ай бұрын
29/10 time 12:28pm
@captainsingh-g5d Жыл бұрын
how to download dataset from your Github ,it is showing "raw file download" and not downloading please help anyone
@campusx-official Жыл бұрын
Copy the url and load directly in pandas
@MuhammadJunaid-yr8jd Жыл бұрын
thank you so much
@harshkondkar31933 жыл бұрын
How to deal with the situation where there are unseen categories in the test data?
@rachitsingh49132 жыл бұрын
its always good to apply encoding without train test split .
@anjushac9307 Жыл бұрын
The encoders have additional parameters that you can set to decide what to do incase unseen categories are encountered in the test data. You can check the documentation for more details
@harshkondkar3193 Жыл бұрын
@@anjushac9307 will check the doc. Thanks!!
@mukteshsingh83703 ай бұрын
Day-26
@Ganeshjadhav28083 жыл бұрын
thank you sir
@GamesKaMantralaya3 күн бұрын
6:27 barrish gohi to placement nhi hoga (new logic unclocked🃏)
@tradingbrothers1126 Жыл бұрын
kaggle pay nhi milra
@annyd34062 жыл бұрын
11 20 to 12 10 - why column transformer
@yashjain63722 жыл бұрын
loved it
@monikrayu25465 ай бұрын
bol sakte hai sir 3:02
@Star-xk5jp11 ай бұрын
day2-date:10/1/24
@tejaskamble873111 ай бұрын
❤🔥🔥
@ZaidAnsari-un5puАй бұрын
lub you
@chetanchavan647 Жыл бұрын
Best
@osho_magic2 жыл бұрын
Jitni tareef ki Jae Kam h . ..
@aj_ai Жыл бұрын
👾👾👾
@harshmishra77743 жыл бұрын
Engg branch should be the example of ordinal data 🤣
@MRAgundli8 ай бұрын
done
@tradingbrothers1126 Жыл бұрын
sir data set upload kar o
@captainsingh-g5d Жыл бұрын
Please help anyone
@1981Praveer2 жыл бұрын
Q. If we have a big dataset. let's say Housing_price.csv(from Kaggle), then how would I know which column has ordinal data? is there any API to check? @CampusX #CampusX