Another way to solve it is by finding the arc ABC to be twice angle D, or 228 degrees. Since arc AB is 142 degrees, that leaves arc BC at 86 degrees, so angle A is half 86+100, or 93 degrees. From here, one can say angle C is 180-93, or 87 degrees, and angle B is 180-114, or 66 degrees.
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@semeemaazad894823 сағат бұрын
Yes. I found this way. Sir showed another way thank u👍🏼👍🏼
As quadrilateral ABCD is a cyclic quadrilateral, opposite angles must sum to 180°. As angle d is given as 114°, then [ b = 180°-114° = 66° ] As the angle subtending an arc from the circumference is half the angle subtending the same arc from the center, then as ∠ADC (angle d) = 114°, ∠AOC = 2(114°) = 228°. As ∠AOB = 142°, ∠BOC = 228°-142° = 86°. As ∠CBA (angle b) = 66°, then ∠COA = 2(66°) = 132°. This also could have been determined by subtracting the value of ∠AOC (228°) from 360°. As ∠COD = 100°, then ∠DOA = 132°-100° = 32°. As angle a subtends arcs CD and BC, then: a = (∠COD+∠BOC)/2 a = (100°+86°)/2 [ a = 186°/2 = 93° ] As angle c subtends arcs AB and DA, then: c = (∠AOB+∠DOA)/2 c = (142°+32°)/2 [ c = 174°/2 = 87° ]
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@ChuzzleFriendsКүн бұрын
ABCD is a cyclic quadrilateral, so opposite angles must be supplementary. Therefore, m∠B = b° = 180° - 114° = 66°. (b = 66) Let's draw radii AO & CO. This forms a central ∠AOC which subtends the same arc with ∠B. By the Measure of an Inscribed Angle Theorem, m∠AOC = 66° * 2 = 132°. So, minor arc AC must also measure 132° (A measure of a central angle is the measure of the arc it subtends). Since the minor arc CD already measures 100°, arc AD must be a minor arc that measures 32°. Draw radii BO & DO. This forms another central ∠BOD which subtends the same arc with ∠C. By the Arc Addition Postulate, arc BD must be a minor arc that measures 142° + 32° = 174°. So, m∠BOD = 174°. By the Measure of an Inscribed Angle Theorem, m∠C = c° = (174°)/2 = 87°. (c = 87) Finally, m∠A = a° = 180° - 87° = 93°. (a = 93) So, the values of the variables are as follows: a = 93 b = 66 c = 87
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@matthewmcdaid7962Күн бұрын
I solved it using isosceles triangles. Four triangles with apexes at O. And of course got the same result.
b = 180° - 114° = 66° Angle AOC = 2*66°= 132° Angle AOD = 132°-100°= 32° c = ½ (142°+32°) = 87° a = 180° - c = 93° ( Solved √ )
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@highlyeducatedtruckerКүн бұрын
Another way to do this one: Draw an auxilliary line from A to C. Then you can use the Central Angle Theorem to find angle ACB and angle CAD. (Angle ACB is 71, angle CAD is 50.) Then use sum of angles in a triangle = 180 to find out the rest. (Angle ACD = 180-114-50=16. Angle BCD = Angle ACD + Angle ACB = 71 + 16 = 87. And Angle CAB = 180 - Angle BCD = 180 - 87 = 93.)
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@Birol731Күн бұрын
My way of solution ▶ ∠ADC = 114° Since the sum of opposite angles of a quadrilateral inscribed in a circle is 180°, we can write: ∠ADC + ∠CBA = 180° ⇒ ∠CBA = 66° b= 66° ✅ ∠ADC= 114° 114°*2= ∠(AB) + ∠(CB) ∠(AB)= 142° ⇒ 228°= 142° + ∠(CB) ∠(CB)= 86° a= [∠(DC) + ∠(CB)]/2 ∠(DC)= 100° ∠(CB)= 86° ⇒ a= 93° ✅ a+c= 180° a= 93° ⇒ c= 87° ✅ a= 93° b= 66° c= 87°
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@johankotze42Күн бұрын
I initially thought PreMath had lost his marbles when he first explained the subtended angle using AOB etc. 😀 I did the solution by drawing in a;; the radii from O to A B C and D. Then you end up with a bunch of isosceles triangles.
@PreMathКүн бұрын
Excellent! Thanks for the feedback ❤️
@unknownidentity28462 күн бұрын
Let's find the angles: . .. ... .... ..... A convex quadrilateral ABCD is cyclic if and only if its opposite angles add up to 180°. So we can conclude: d = ∠ADC = 114° ⇒ b = ∠ABC = 180° − d = 180° − 114° = 66° According to the central angle theorem we obtain: ∠ACB = ∠ADB = ∠AOB/2 = 142°/2 = 71° ∠CAD = ∠CBD = ∠COD/2 = 100°/2 = 50° ∠BDC = ∠ADC − ∠ADB = 114° − 71° = 43° Let E be the point where AC and BD intersect. Now we apply the exterior angle theorem to the triangle ADE: ∠CED = ∠DAE + ∠ADE = ∠CAD + ∠ADB = 50° + 71° = 121° From the interior angle sum of the triangle CDE we obtain: 180° = ∠DCE + ∠CDE + ∠CED = ∠ACD + ∠BDC + ∠CED = ∠ACD + 43° + 121° = ∠ACD + 164° ⇒ ∠ACD = 180° − 164° = 16° Now we are able to calculate the values of the remaining angles: c = ∠BCD = ∠ACD + ∠ACB = 16° + 71° = 87° a = ∠BAD = 180° − c = 180° − 87° = 93° Best regards from Germany
@PreMathКүн бұрын
Excellent!😀 Thanks for sharing ❤️
@LuisdeBritoCamachoКүн бұрын
STEP-BY-STEP RESOLUTION PROPOSAL : 01) Arc AB = 142º 02) Arc ABC = (114º * 2) = 228º 03) Arc BC = 228º - 142º = 86º 04) Arc CD = 100º 05) Arc AD = 360º - (142º + 86º + 100º) = 360º - 328º = 32º 06) Angle a = (186º / 2) = 93º 07) Angle b = (132º / 2) = 66º 08) Angle c = (174º / 2) = 87º 09) Angle d = 114º 09) Check : 93º + 66º + 87º + 114º = 360º Thus, OUR BEST ANSWER IS : Angle a = 93º Angle b = 66º Angle c = 87º
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@gelbkehlchenКүн бұрын
Solution: In a chord quadrilateral, the opposite angles add up to 180°. Therefore: b+114° = 180° |-114° ⟹ b = 66° The corresponding central angle at 114° is twice as large, namely 228°. Therefore: arc BC + 142° = 228°|-142° ⟹ arc BC = 86° ⟹ Central angle at a = arc BC + arc CD = 86°+100° = 186° ⟹ a = 186°/2 = 93° ⟹ c = 180°-93° = 87°
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@PrithwirajSen-nj6qqКүн бұрын
Ang DOC =100 degs Ang ODC =ang OCD =(180-100)/2=40 degs Ang AOC=142 degs Ang OAC =ang OCA =(180-142)/2=19 degs Any b =114/2=66 degs Ang OBC =angle OCB =66-19=47 degs c=40+47=87 degs Angle a=360-66-87-114=93 degs
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@marcgriselhubert39152 күн бұрын
Fine.
@PreMathКүн бұрын
Thanks for the feedback ❤️
@DaRealNoobKingКүн бұрын
stop not using vectors, pls just use vectors
@AmirgabYT21852 күн бұрын
93°; 66°; 87°
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@wackojacko39622 күн бұрын
@ 4:13 , how does that Central Angle Theorem work when Central Angle is 0⁰ ? It's a bizarre lookin Bowtie too say the least. 🤔 A Bowtie with only two lines! 😊
@PreMathКүн бұрын
Wow😀 Thanks for sharing ❤️
@PrithwirajSen-nj6qqКүн бұрын
Join AC Ang CAD = 1/2 ang COD =50 Now from 🔺 ACD ang ACD =180-114 - 50=16 Angel ACB =1/2*ang AOC = 142/2=71 Hence c =16+71 =87 a= 180-87 =93 b= 180- 114=66
@PreMathКүн бұрын
Excellent! Thanks for sharing ❤️
@TramHicksКүн бұрын
I understand some
@PreMathКүн бұрын
No worries... Thanks for the feedback ❤️
@k9slayer2 күн бұрын
magic
@PreMathКүн бұрын
Excellent! Glad to hear that! Thanks for the feedback ❤️