Can you find area of the Purple shaded region? | (Rectangle) |

  Рет қаралды 4,176

PreMath

PreMath

Күн бұрын

Пікірлер: 41
@dariosilva85
@dariosilva85 18 сағат бұрын
I got the purple area to be (b^3/2a). Which together with your answer implies that b = a*sqrt(3). Which implies that the triangles must be 30-60-90 triangles for this set-up to be possible.
@quigonkenny
@quigonkenny 15 сағат бұрын
Yep, you can see that G is the midpoint of AC, since FGCB is made up of two congruent triangles, each of area ab/2, meaning GC must be length b and AC is 2b. ∆ADC is thus a 30-60-90. By extension, all the other triangles in the diagram are 30-60-90 as well.
@Ibrahimfamilyvlog2097l
@Ibrahimfamilyvlog2097l 5 сағат бұрын
Thanks for sharing Sir ❤❤❤
@uwelinzbauer3973
@uwelinzbauer3973 18 сағат бұрын
I recognized, that AF=FC, and that AC=2b. Hence AC/BC=2b/b=2. So we have the triangles to be special case 30,60,90 triangles. Asked area = 1.5*a*b. Thanks for sharing this interesting geometric puzzle 👍
@BorisTruh
@BorisTruh 19 сағат бұрын
AF^2=a^2+b^2, S(ACD)=0,5*b*{sqr(a^2+b^2)+a}
@jamestalbott4499
@jamestalbott4499 16 сағат бұрын
Thank you!
@KenW-kb4uk
@KenW-kb4uk 12 сағат бұрын
There is some inconsistency evident here.
@geraldgiannotti8364
@geraldgiannotti8364 10 сағат бұрын
Yes. The PreMath answer of 3ab/2 ONLY applies if the triangles are 30-60-90 right triangles. The area formula of A =(0.5)b(a + sqrt(a^2+b^2)) works for all values of a and b.
@nenetstree914
@nenetstree914 18 сағат бұрын
b*[(a^2+b^2)]^(0.5)-(ab/2) ???
@thewolfdoctor761
@thewolfdoctor761 18 сағат бұрын
That's what I got, so does this equal 3ab/2 ?
@AdemolaAderibigbe-j8s
@AdemolaAderibigbe-j8s 15 сағат бұрын
@@thewolfdoctor761 Yes it does. The area of triangle ADC is (0.5)b(a + sqrt(a^2+b^2)) and that is the same area as the stated expression i.e., b*[(a^2+b^2)]^(0.5)-(ab/2). If you equate these two expressions, you end up with b*sqrt(a^2 + b^2) = 2ab. If you substitute that in the stated expression, you get the area of the purple shaded area as 3ab/2.
@geraldgiannotti8364
@geraldgiannotti8364 11 сағат бұрын
The above answer is correct, and is the General solution for any value of a or b. The PreMath answer of 3ab/2 ONLY applies if the triangles are special 30-60-90 right triangles.
@AdemolaAderibigbe-j8s
@AdemolaAderibigbe-j8s 10 сағат бұрын
@@geraldgiannotti8364 Can you come up with any set-up that has "a" and "b" values for which all the requirements of the problem are met and for which b*[(a^2+b^2)]^(0.5)-(ab/2) is a solution and 3ab/2 is not a solution?
@geraldgiannotti8364
@geraldgiannotti8364 10 сағат бұрын
@@AdemolaAderibigbe-j8s Yes. The area formula of A =(0.5)b(a + sqrt(a^2+b^2)) works for all values of a and b. The solution of 3ab/2 is only obtained when b=sqrt(3)*a. This constraint of b/a = sqrt(3) makes all the triangles 30-60-90 right triangles
@santiagoarosam430
@santiagoarosam430 20 сағат бұрын
FC=FA---> ABC=3ab/2---> ABCD=3ab---> AFED=2ab---> AGFED=2ab-(ab/2) =3ab/2. Gracias y saludos.
@AmirgabYT2185
@AmirgabYT2185 20 сағат бұрын
Why ABC=3ab/2
@santiagoarosam430
@santiagoarosam430 20 сағат бұрын
ABC=FGA+FGC+FBC=3ab/2. Un saludo
@davidteo7421
@davidteo7421 20 сағат бұрын
Final: S=3ab/2 and b^2=3a^2
@imetroangola17
@imetroangola17 17 сағат бұрын
*Solução:* Por Pitágoras no ∆AQF: AF² = a² + b² → AF = (a² + b²)½ A área [AFED] = BC × AF *[AFED] = b(a² + b²)½* A área do triângulo [AFG] = ab/2 A área purple shaded é: [AFED] - [AFG] = = *_b[(a² + b²)½ - a/2]_*
@imetroangola17
@imetroangola17 16 сағат бұрын
Caso queira brincar mais nas equações, o professor provou que a área sombreada roxa é 3ab/2. Daí, b [(a² + b²)½ - a/2] = 3ab/2 (a² + b²)½ - a/2 = 3a/2 (a² + b²)½ = 3a/2 + a/2 = 2a a² + b² = 4a² → 3a² = b² → b=a√3. Portanto, a área sombreada roxa pode ser dada por : 3ab/2 = *3√3a²/2.*
@cyruschang1904
@cyruschang1904 2 сағат бұрын
Purple area = rectangle ADEF - half of the green rectangle = half of the rectangle ABCD b√(a^2 + b^2) - ab/2 = b(a + √(a^2 + b^2))/2 Let √(a^2 + b^2) = L bL - ab/2 = b(a + L)/2 ab = bL/2 L = 2a Purple area = b(2a) - ab/2 = 3ab/2
@Geometricat38
@Geometricat38 19 сағат бұрын
You can also express the answer in terms of a or b alone, since b = a.sqrt(3): Area = (3a^2.sqrt(3))/2. If you want to be even more picky, you could write: (3^(3/2).a^2)/2. Area = (b^2.sqrt(3))/2 The answer can also be expressed as follows: Area = b^3/ (2a) Substituting b^2 = 3a^2, one arrives at Premath's answer. Cheers!
@scottdort7197
@scottdort7197 6 сағат бұрын
That's what I got. Pre-math's conclusion was in complete in my opinion. b = a * sqrt3. Therefore the area is A = a^2*3/2*sqrt3.
@arizonarunner1953
@arizonarunner1953 9 сағат бұрын
I believe the triangles are 30°, 60°, 90°. Therefor, the solution can be Area = (√(3)/2)*b².
@harikatragadda
@harikatragadda 20 сағат бұрын
∆AQF is Similar to ∆ADC. Hence [∆ADC]=(b/a)² *[∆AQF]=b³/2a
@alexundre8745
@alexundre8745 19 сағат бұрын
Bom dia Mestre Forte Abraço aqui do Rio de Janeiro
@zawatsky
@zawatsky 17 сағат бұрын
▲EPC переносим в равный ему ▲GFP. Видим, что получилась фигура, составленная из прямоугольника и дельтоида с равной площадью (составленные фактически каждый из пары треугольников-половинок), а лиловая площадь S(ACD)=S(АВСВ)/2, обозначим просто как S. Общая площадь 2ab. Видим, что 3 из 4 этих треугольников занимают вторую половину площади большого, равную искомой, т. е. S=¾*2ab=3ab/2.
@quigonkenny
@quigonkenny 15 сағат бұрын
Draw FC. As FG = BF = a, ∠CBF = ∠FGC = 90°, and FC is common, then ∆FGC and ∆CBF are congruent triangles. As GC = CB = b and AG = FQ = b, then AC = 2b. As ∠BAC = ∠GAF and ∠AGF = ∠CBA = 90°, then ∆AGF and ∆CBA are similar triangles. FA/GF = AC/CB FA/a = 2b/b = 2 FA = 2a The purple shaded area is equal to the area of the rectangle ADEF minus the area of triangle ∆AGF. Purple shaded area: A = lw - bh/2 A = FA(AD) - AG(GF)/2 A = 2a(b) - b(a)/2 A = 2ab - ab/2 [ A = 3ab/2 sq units ]
@daniellerosalie2155
@daniellerosalie2155 7 сағат бұрын
30, 60, 90 triangles is the (square root of 3/2)*b^2
@MegaSuperEnrique
@MegaSuperEnrique 21 сағат бұрын
That was AAS congruency, not ASA, not that it matters too much
@wastedontheyoung5585
@wastedontheyoung5585 11 сағат бұрын
since area triangle PEC = area triangle PGF then answer is area triangle ADC its area is half height times base. since AD = BC then height is b since DC = AB then base is AF + FB FB is a and we can calculate AF using Pythagorean Theorem or (a^2+b^2)^(1/2) although my answer is more complicated it was derived faster and has fewer steps does it simplify to your answer?
@DanyVanImpe
@DanyVanImpe 17 сағат бұрын
That is only true if the triangle AQF is a triangle with angles 30°- 60°- 90°
@adamoksiuta4715
@adamoksiuta4715 16 сағат бұрын
When you knew that purple area is 1/2 of area of rectangle ABCD, you can calculate the area of the rectangle ABCD. How? AB is equal AF + FB. Lenght of FB is equal a, and lenght of AF you can calculate from right triangle AQF. When you use of Pythagorean theroem lenght of AF is equal sqrt of (a^2 + b^2). So lenght of AB is equal [sqrt (a^2 + b^2) + a]. When you multiply it by 1/2 of b you will have an area of purple figure.
@marcgriselhubert3915
@marcgriselhubert3915 20 сағат бұрын
AB = AF + FB = sqrt(a^2 + b^2) + a, so the big rectangle area is (sqrt(a^2 + b^2) + a).b and the purple shaded area is ((sqrt(a^2 + b^2) + a).b - (3/2).a.b This result is less "nice" than the result you found but it is immediate to obtain. Now let's see why these results are really the same: (sqrt(a^2 + b^2) + a).b -(3/2).a.b = (3/2).a.b is equivalent to sqrt(a^2 + b^2) + a = 3.a or sqrt(a^2 + b^2) = 2.a or a^2 + b^2 = 4.a^2 or b^2 = 3.a^2 or b = sqrt(3).a This is the condition other persons already found. The initial drawing must verify b = sqrt(3).a to be constructed. For example t = angleFCB must be equal to 30° (tan(t) = a/b = sqrt(3)/3).
@awandrew11
@awandrew11 19 сағат бұрын
area AQFG- 1/2 ab is the answer, AQFG area =( root of a square + b square( Pythagorus))Xb, answer is b( root {a square+ b square}-1/2 a}?
@MegaSuperEnrique
@MegaSuperEnrique 21 сағат бұрын
So we could continue the math: if purple area = 3ab/2, then dimensions of rectangle are b and 3a, so AF=2a. Then with the triangle, sides of a and b, hypotenuse of 2a, only works if b=a√3, which means it must be a 30-60-90 triangle.
@marcgriselhubert3915
@marcgriselhubert3915 20 сағат бұрын
You are right, there are lots of 30° and 60° angles in the given drawing.
@phungpham1725
@phungpham1725 18 сағат бұрын
1/ The two triangles FGP and CEP are congruent--> Area of the purple region= 1/2 area of the big rectangle. 2/ Note that AF= FC-> the triangle AFC is an isosceles one, which means that the three triangles AFG=CFG=CFB -> Area of the purple region= 3 ab/2😅😅😅
@unknownidentity2846
@unknownidentity2846 19 сағат бұрын
Let's find the area: . .. ... .... ..... First of all we observe that the triangles AFG and CEP are similar (∠AGF=∠CEP=90° ∧ ∠ECP=∠FAG). So we can conclude: EP/CE = FG/AG EP/a = a/b ⇒ EP = a²/b The triangles CEP and FGP are congruent (CE=FG=a ∧ ∠CEP=∠FGP=90° ∧ ∠CPE=∠FPG). Therefore we know that CP=FP. Now we apply the Pythagorean theorem to the right triangle CEP: CP² = CE² + EP² FP² = CE² + EP² (EF − EP)² = CE² + EP² EF² − 2*EF*EP + EP² = CE² + EP² EF² − 2*EF*EP = CE² b² − 2*b*(a²/b) = a² b² − 2a² = a² b² = 3a² ⇒ b = √3a Now we are able to calculate the area of the purple region: AF² = AQ² + FQ² = a² + b² = a² + 3a² = 4a² ⇒ AF = 2a A(purple) = A(ADEF) − A(AFG) = AF*AD − (1/2)*AG*FG = (2a)*b − (1/2)*b*a = 2ab − ab/2 = 3ab/2 = (3√3/2)a² Best regards from Germany
@sergioaiex3966
@sergioaiex3966 14 сағат бұрын
Solution: Triangle FGP is congruent to Triangle CEP Therefore: GP = EP FG = CE FP = CP Like that, we conclude that Purple Area is half of Rectangle ABCD Area Purple Area = ½ Rectangle ABCD Area ... ¹ The Triangles AGF and CEP are similar, so we are going to use proportions EP/CE = FG/AG EP/a = a/b EP = a²/b Now, applying the Pythagorean Theorem in Triangle CEP CE² + EP² = CP² But CP = FP and FP = EF - EP CE² + EP² = FP² CE² + EP² = (EF - EP)² CE² + EP² = EF² - 2 EF . EP + EP² CE² = EF² - 2 EF . EP a² = b² - 2 . b . a²/b a² = b² - 2a² 3a² = b² b² = 3a² b = a√3 AG² + FG² = AF² b² + a² = AF² AF² = (a√3)² + a² AF² = 3a² + a² AF² = 4a² AF = 2a AB = AF + BF AB = 2a + a AB = 3a Substituting in ¹ Purple Area = ½ length × width Purple Area = ½ AB × BC Purple Area = ½ 3a × b Purple Area = 3ab/2 Square Units ✅
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Poland Math Olympiad | A Very Nice Geometry Problem
13:29
Math Booster
Рет қаралды 13 М.
10th Grade Exam from Germany - Can you solve it?
9:19
Math Queen
Рет қаралды 34 М.
How to Compute Square Roots in Your Head
14:49
Dave's Math Channel
Рет қаралды 12 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 133 М.
Can you crack this beautiful equation? - University exam question
18:39
Old Geometry Book from the 1960s
9:01
The Math Sorcerer
Рет қаралды 4,2 М.
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН