Amei a questão, professor, meio difícil, mas com a sua explicação ficou fácil. Obrigada, saudações de Bauru SP
@PreMath Жыл бұрын
O prazer é meu! Você é incrível. Continue sorrindo👍 Amor e orações dos EUA! 😀
@HappyFamilyOnline Жыл бұрын
Good one 👍 Thanks for sharing 😊
@LogicQuest Жыл бұрын
Thank you for this question. Gratitude.
@marioalb9726 Жыл бұрын
Side of equlateral triangle: S = 4. r + 2 . r / tan (60°/2) S = 4 . 8 + 2 . 8 / tan 30° S = 59,713 cm Perimeter of triangle: P = 3 . S P = 179,14 cm Area of equilateral triangle: A = √3/4 S² A = 1543,96 cm²
@ybodoN Жыл бұрын
Generalized: the side of the equilateral triangle is _2r (√3 + n − 1)_ where _r_ is the radius of the circles and _n_ is the number of circles fitted along one side of the triangle.
@Copernicusfreud Жыл бұрын
Yay! I solved it. I came up with the approximation of the area of the triangle using Heron's formula, which was approximately 1544 square units.
@tombufford136 Жыл бұрын
After some thought I focused on the lower left corner angle BAC is 60 degrees and the angle to the center of the lower left circle, D, is 30 degrees from symmetry. Forming a triangle ADE where E is the intersection of a perpendicular from D and the horizontal from A. Distance AE is 8/tan(30)=13.85.Distance AB = 2*13.85+32 =59.72 ,so the perimeter =3*59.72 =179.14. The height of ABC is 0.5sqrt(3) * 59.72. using 1/2 base * height . 0.5sqrt(3)*59.72 *59.72*0.5 = area=1,544. Looking forward to the video
@unknownidentity2846 Жыл бұрын
Here we go: . .. ... .... ..... From the center of the lower left circle three lines are drawn: one to point A and the other two to the points of intersection of this circle and the triangle. Now we have two congruent 30°-60°-90° triangles. Since the length of the shorter cathetus is the radius R of the circle, we can easily calculate the distance between A and the points of intersection of the lower left circle and the triangle: R/d = tan(30°) = sin(30°)/cos(30°) = 1/√3 ⇒ d = √3R The calculation of the remaining properties is now not difficult anymore: AB = AC = BC = 2d + 4R = 2√3R + 4R = 2(√3 + 2)R P(ABC) = 3*AB = 6(√3 + 2)R = 48(√3 + 2) A(ABC) = (√3/4)*AB² = (√3/4)*2²(√3 + 2)²R² = √3(3 + 4√3 + 4)R² = √3(7 + 4√3)R² = (12 + 7√3)R² = 64(12 + 7√3) Best regards from Germany
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@quigonkenny9 ай бұрын
Let the center of the top circle be O, the center of the bottom right circle be P, and the center of the bottom middle circle be S. Let E and D be the points on BC that are tangent to P and O respectively, let G and F be the points on AB that are tangent with S and P respectively, and let H be the point on CA that is tangent with O. As ∠DCO = ∠DCH/2 or 30° and ∠ODC is 90°, ∆ODC and ∆CHO are congruent 30-60-90 triangles. By symmetry, the same is true for ∆BEP and ∆PFB. Triangle ∆ODC: O/H = sin 30° 8/CO = 1/2 CO = 8(2) = 16 A/H = cos 30° DC/16 = (√3)/2 DC = 8√3 As ∠PED and ∠EDO are each 90°, ED = OP = 4(8) = 32. BC = BE + ED + DC BC = 8√3 + 32 + 8√3 = 32 + 16√3 By observation, as ∠CSB is 90°, ∠SBC = 60°, and ∠BCS is 30°, ∆CSB is a 30-60-90 triangle. Triangle ∆CSB: O/H = sin 30° SB/(32+16√3) = 1/2 SB = (32+16√3)/2 = 16 + 8√3 A/H = cos 30° CS/(32+16√3) = (√3)/2 CS = (32+16√3)(√3)/2 = (48+32√3)/2 CS = 24 + 16√3) Triangle ∆ABC: Perimeter = (3)BC = 3(32+16√3) = 96 + 48√3 Area = AB(CS)/2 = (32+16√3)(24+16√3)/2 Area = (16+8√3)(24+16√3) Area = 384 + 256√3 + 192√3 + 128(3) Area = 768 + 448√3
@williamwingo4740 Жыл бұрын
Once you have the side of the big triangle as 32 + 16 sqrt(3) you can also get the area by (1/2)(base)(altitude).. The altitude is (16 + 8 sqrt(3))(sqrt(3)) = 24 + 16 sqrt(3) so we have (1/2)(24 + 16 sqrt(2))(32 + 16 sqrt(3)) = (12 + 8 sqrt(3))(32 + 16 sqrt(3)) = 384 + 384 + (192 + 256)(sqrt(3) = 768 + 448 Sqrt(3); so it comes out the same. 🤠
tan30⁰ = sin30⁰ ÷ cos30⁰ = 1/2 ÷ ✓3/2 = 1/✓3 radius of each circle = r = 8 The length of each side of the triangle = 4r + 2x8✓3 = 4x8 + 2x8✓3 = 16(2 + ✓3) = 32 + 16✓3 the height of the triangle = (32 + 16✓3) ÷ 2 x ✓3 The perimeter of the triangle = 3x16(2 + ✓3) = 48 (2 + ✓3) = 96 + 48✓3 The area of the triangle = [16(2 + ✓3)] [16(2 + ✓3) ÷ 2 x ✓3 ] ÷ 2 = (2 + ✓3) (2 + ✓3) x 64 x ✓3 = (7 + 4✓3) x 64 x ✓3 = 64(12 + 7✓3)
@wackojacko3962 Жыл бұрын
I commented on yesterday's episode no matter what 30⁰ 60⁰ 90⁰ Right Triangle you may have you need to apply the Pythagorean Theorem along with the known facts that the Hypotenuse is Twice the Shorter side opposite 30⁰and that the Longer side opposite 60⁰ is a multiple of the Shorter side times 3⅓. Very few triangles are special like this. 🙂
@PreMath Жыл бұрын
Excellent! Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@misterenter-iz7rz Жыл бұрын
S=8×4+2×(8×sqrt(3))=32+16sqrt(3)=16(2+sqrt(3)), therefore the perimeter is 48(2+sqrt(3))=179.14 approximately, the area is (1/2)16^2(2+sqrt(3))^2sqrt(3)/2=64(12+7sqrt(3))=1544 approximately 😊
@PreMath Жыл бұрын
Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@giuseppemalaguti435 Жыл бұрын
È un triangolo equilatero...risulta h=24+16√3...e l=2h/tg60=16(√3+2)...perciò A=bh/2=64(7√3+12)...spero che non ci siano errori
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@misterenter-iz7rz Жыл бұрын
First like adder.🎉
@PreMath Жыл бұрын
You rock!
@DDX01 Жыл бұрын
I have solved by the very same method
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@arnavkange1487 Жыл бұрын
First time i saw so many circles inside a triangle 😂😂
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍