Can you find the area of the Purple triangle? | (Important Geometry skills explained) |

  Рет қаралды 39,835

PreMath

PreMath

Күн бұрын

Пікірлер: 63
@robertbourke7935
@robertbourke7935 10 ай бұрын
Got it! Many thanks. A clever exercise.
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@ОльгаСоломашенко-ь6ы
@ОльгаСоломашенко-ь6ы 10 ай бұрын
You can use the chord theorem. Extend the DO to the intersection with the circle and get the diameter. And the diameter is a chord. AD*DC=1*3. CD=3/√5. According to the Pythagorean theorem, we find CB=4/√5. S=0.5*(3/√5)*(4/√5)=1.2.
@howardaltman7212
@howardaltman7212 10 ай бұрын
Beautiful, simple solution. Bravo!
@ОльгаСоломашенко-ь6ы
@ОльгаСоломашенко-ь6ы 10 ай бұрын
@@howardaltman7212 Спасибо
@Jack_Callcott_AU
@Jack_Callcott_AU 10 ай бұрын
Neat!
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@m.h.6470
@m.h.6470 10 ай бұрын
indeed a much better and simpler solution than the one in the video!
@zdrastvutye
@zdrastvutye 6 ай бұрын
either calculate the intersection with a thales circle or calculate the coordinate product repeatedly: 10 print "premath-can you find the area of the purple triangle" 20 l1=sqr(5):r=2*l1/sqr(5):dim x(1,2),y(1,2):sw=r/(l1+r):w=sw 30 @zoom%=@zoom%*1.4:xd=0:yd=r/2:xb=r:yb=0:n=r*r+l1^2:goto 60 40 xc=r*cos(rad(w)):yc=r*sin(rad(w)):dgu1=(xd-xc)*(xb-xc)/n:dgu2=(yd-yc)*(yb-yc)/n 50 dg=dgu1+dgu2:return 60 gosub 40 70 dg1=dg:w1=w:w=w+sw:w2=w:gosub 40:if dg1*dg>0 then 70 80 w=(w1+w2)/2:gosub 40:if dg1*dg>0 then w1=w else w2=w 90 if abs(dg)>1E-10 then 80 100 print w:la=sqr((xd-xc)^2+(yd-yc)^2):lb=sqr((xc-xb)^2+(yc-yb)^2) 110 x(0,0)=0:y(0,0)=0:x(0,1)=r:y(0,1)=0:x(0,2)=0:y(0,2)=r/2 120 x(1,0)=0:y(1,0)=r/2:x(1,1)=r:y(1,1)=0:x(1,2)=xc:y(1,2)=yc 130 ages=la*lb/2:print "die flaeche=";ages:mass=8E2/r:goto 150 140 xbu=x*mass:ybu=y*mass:return 150 for a=0 to 1:gcol8+a:x=x(a,0):y=y(a,0):gosub 140:xba=xbu:yba=ybu:for b=1 to 3 160 ib=b:if ib=3 then ib=0 170 x=x(a,ib):y=y(a,ib):gosub 140:xbn=xbu:ybn=ybu:goto 190 180 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return 190 gosub 180:next b:next a:gcol8:xba=0:yba=0:gosub 140:circle xba,yba,r*mass premath-can you find the area of the purple triangle 53.1301024 die flaeche=1.2 > run in bbc basic sdl and hit ctrl tab to copy from the results window
@spafon7799
@spafon7799 10 ай бұрын
Alternatively: find CD and CB in order to get the area of the triangle as 1/2 * CB*CD. As in the video solution, DO= r/2. Pythagorean on OBD gives (r/2)^2+r^2=5, thus OB=2 and OD=1. Also as in the given solution, extend CD to A, the left point of the circle. Now note that ABC and ADO are similar triangles, since angle AOD and ACB are right angles and OAD and CAB are the same acute angle. Let us call x= DC and y=CB. We have by similar triangles OA/DA=CA/BA. 2/sqrt(5)=(sqrt(5)+x)/4. This gives x=2/sqrt(5). Now you apply pythagorean to triangle BCD to get x^2+y^2=5. Thus 9/5+y^2=5=25/5. Or y^2=16/5 Thus y=4/sqrt(5). Area of the triangle is (1/2)*x*y= (1/2)*(3/sqrt(5))*(4/sqrt(5))= 6/5.
@phungpham1725
@phungpham1725 10 ай бұрын
1/The radius of the circle= 2 ( it is easy) 2/Extend CD to the left to build the right triangle ABC and the diameter AB. Notice that the angle CDB = 2 the angle DAO. We have tan DAO= 1/2 so tan CDB= 1/ (1-1/4) = 4/3----> BC/DC= 4/3 ------> the triangle BCD is an 3-4-5 triple-----> BC=4/5 BD and DC=3/5 BD The area of the purple triangle = 1/2x 4/5xsqrt5 x 3/5x sqrt5= 1.2 sq units 3/ We can also use the Pythagorean theorem: Let CD and BC be a and b respectively. We have sq(sqrt5+a) + sqb = 16----> 5+sqa+ 2a sqrt5+sqb=16 ---> 5+5+2a sqrt5=16-----> a= 3/sqrt5 and b= 4/sqrt5-----> area= 1/2 x 3/sqrt5 x 4/sqrt5 = 1.2 sq units
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@jimlocke9320
@jimlocke9320 10 ай бұрын
We note that ΔABC and ΔADO are similar. The ratio of sides for ΔADO is (short-long-hypotenuse) is 1:2:√5 or 1/√5:2/√5:1. Applying that ratio to ΔABC and knowing that its hypotenuse is length 4, the two sides are (4)(1/√5) and (4)(2/√5). The area of ΔABC = (1/2)bh = (1/2)(4)(1/√5)(4)(2/√5) = 16/5. The areas of ΔADO and ΔBDO are (1/2)bh = (1/2)(1)(2) = 1 each. Area ΔBCD = Area ΔABC - Area ΔADO - Area ΔBDO = 16/5 - 1 - 1 = 6/5, as PreMath also found.
@tombufford136
@tombufford136 8 ай бұрын
At a quick glance, started solving this in a similar way to the video forming a second Chord using Thales theorem. Then found working arduous without a drawing of the the semi circle. Thank you for the video.
@saltydog584
@saltydog584 10 ай бұрын
It would have been helpful if the fact that it is a quarter circle at the beginning by indicating angle EOB was a right angle on the original diagram at the beginning.
@johnsavard7583
@johnsavard7583 10 ай бұрын
The first useful thing I note is that the vertical radius of the quadrant is divided into two equal parts by point D. So the white triangle below the purple triangle has sides r/2, r, and sqrt(5). That tells me r=2, and the area of that triangle is 1. Now if we extend the quadrant on the left to become a semicircle, line CD, when extended, will (because of the right angle) intercept the point opposite B on the diameter at the bottom; let's call that point X. Angle DBO and angle DXO are equal, and so the triangle BXC is similar to triangle DBO. Triangle DXO and triangle DBO have area 1 each. Triangle BXC has a hypoteneuse of 4 instead of sqrt(5), so its area is 1 times 16/5 because it is scaled up by a factor of 4 over sqrt(5). So the purple triangle has area 6/5, 16/5 minus 2 (which is 10/5).
@linzhaoxu
@linzhaoxu 3 ай бұрын
CD=a,BC=b,so a=root(5-bsqr); (a+root5)sqr+b sqr=4sqr; {(root(5-b sqr)+root5}sqr+b sqr=16; so b=4/root5; so a=3/root5, so the sqr about purple zone is 6/5
@zsoltszigeti758
@zsoltszigeti758 10 ай бұрын
The (semi)circle is x^2+y^2=4, AC line is y=x/2+1. The solution of these are x=-2, y=0 (A point); x=6/5, y=8/5 (C point).
@DB-lg5sq
@DB-lg5sq 10 ай бұрын
شكرا لكم DC=a AD=جذر5 BC=(5-a^2)جذر AB=4 ..... a=3/(5جذر) S=1/2 CB CA =6/5
@jakkima1067
@jakkima1067 23 күн бұрын
AD*DC=(R+1)*1=Sqrt(5)*DC=3. DC=3/Sqrt(5). CB^2=DB^2-DC^2=5-9/5=16/5. CB =4/Sqrt(5). Area=DC*CB=3/Sqrt(5)*4/Sqrt(5)/2=12/10=1,2.
@quigonkenny
@quigonkenny 10 ай бұрын
Another, potentially easier way to measure the area of the larger triangle: We can tell by complementary angles that ∆ABC and ∆ADO are similar. By Pythagorean Theorem: AD² = OD² + OA² AD² = 1² + 2² = 5 AD =√5 CB/OD = AB/AD CB/1 = 4/√5 CB = 4/√5 AC = 2CB = 8/√5 A = ½bh = ½(8/√5)(4/√5) = 16/5 Aₚ= ∆ABC - ∆ABD = 16/5 - 2 = 6/5
@misterenter-iz7rz
@misterenter-iz7rz 10 ай бұрын
I see, I have think out of box, that is extending the quarter circle to semicircle, so there is a right angled triangle inscribed in a semicircle, let x be DC, 2/sqrt(5)=(sqrt(5)+x)/4, 8=5+sqrt(5)x, x=3/sqrt(5)=3/5 sqrt(5), and BC=4× 1/sqrt(5)=4/5 sqrt(5), thus the triangle is 3/5 sqrt(5)× 4/5 sqrt(5), and the area is 5× 3/5×4/5×1/2=6/5.😊
@ProfessorDBehrman
@ProfessorDBehrman 10 ай бұрын
Nice problem. Thanks.
@awandrew11
@awandrew11 10 ай бұрын
BC=2, DC=1, therefore DB=Square root 5, Area opf triangleBCD=CBxCD/2=2x1/2=1!?
@LuisdeBritoCamacho
@LuisdeBritoCamacho 10 ай бұрын
1) Finding the Radius of the Quarter of a Circle: x^2 + 2x^2 = 5 5x^2 = 5 5x^2 - 5 = 0 5*(x^2 - 1) = 0 x^2 - 1 = 0 x = 1 Radius = 2 lu (linear units) 2) Finding the Slope of the Straight Line passing the points C and D and points B and C: First Slope: m = (1 - 0) / (0 + 2) = 1/2 m * m' = -1 So, the 2nd Slope is m' = - 2 3) Equations of the Straight Lines a) y = x/2 + 1 b) y = - 2x + 4 4) Point of Intersection (Point C); coordinates: x = 1,2 y = 1,6 4) Finding the Distances between Point C and D and Point B and C: CD ~ 1,342 BC ~ 1,789 5) Finding the Purple Area: PA = CD * BC / 2 PA = 1,342 * 1,789 / 2 PA = 2,400 / 2 PA ~ 1,2 su Final Answer: Purple Area equal 1,2 su
@alokranjan4149
@alokranjan4149 10 ай бұрын
Very Beautifully solved by using co-ordinate geometry. So nice 👍
@bigm383
@bigm383 10 ай бұрын
Thanks Professor for a very nice problem.
@PreMath
@PreMath 10 ай бұрын
Thanks❤️🌹
@uwelinzbauer3973
@uwelinzbauer3973 10 ай бұрын
This one I also was able to find out. Again I used a way different from the video. This question was a bit challenging to me. But that's what we need to improve our skills. Thanks for the interesting video! Greetings 🙏
@giuseppemalaguti435
@giuseppemalaguti435 10 ай бұрын
CB=b...intanto calcolo r...(r/2)^2+r^2=5...r=2...poi imposto l'equazione risolutiva,..b=√5cos(arccos(b/2r)-arctg(1/2))..quindi ,calcolo l'altro cateto CD...e quindi l'area..... l'equazione diventa..b/2+√(1-b^2/16=b...b=4/√5...CD=√(5-16/5)=3/√5...A=(4/√5*3/√5)/2=6/5.... alleluia
@hermannschachner977
@hermannschachner977 10 ай бұрын
bravo seppe, so denke auch ich (Österreich): 2,5 x sin 36,87.... x cos 36,87.... = 1.2
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@marcgriselhubert3915
@marcgriselhubert3915 10 ай бұрын
The raduis of the circle is 2 (easy, as evrerybody says). In an adapted orthonormal we have O(0;0), B(2;0) E(0;2) D(0;1) and C(2 cos(x); 2 sin(x)) where x is unknown between 0 and 90° Then VectorDC (2 cos(x); 2 sin(x) -1) and Vector BC (2 cos(x) -2; 2 sin(x)) . These vectors are orthogonal, so we heve: (2 cos(x)). (2 cos(x) -2) + (2 sin(x) -1). (2 sin(x)) = 0. We develop, use the fact that cos(x)^2 + sin(x)^2 = 1, and simplify. We obtain: 2 cos(x) + sin(x) = 1. This is a well known trigonometric equation. Let's divide by sqrt(5) and consider x0 between 0° and 90° as cos(x0) = 2/sqrt(5) and sin(x0) = 1/sqrt(5). We get cos(x0).cos(x) + sin(x0).sin(x) = cos(x0), or cos (x-x0) = cos(x0) Then x - x0 = x0 (mod 360°) or x -x0 = -x0 (mod 360°), giving that x = 2x0 is the only solution between 0° and 90° So, cos(x) = cos (2. x0) = 2 (cos(x0))^2 - 1 = 2. (4/5) - 1 = 3/5, and sin(x) = sin(2.x0) = 2. sin(x0). cos x0) = 2.(1/sqrt(5)). (2/sqrt(5)) = 4/5. Now we have point C (6/5; 8/5) and then Vector DC (6/5; 3/5), giving DC = sqrt ((36/25) + (9/25)) = sqrt(45)/5 = 3.sqrt(5)/5 and also Vector BC (-4/5; 8/5), giving BC _ sqrt ((16/25) + (64/25)) = sqrt (80)/5 = 4.sqrt(5)/5 The area of the triangle is (1/2). DC. BC = 6/5 when simplified.
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@ANNUANNU-b7f
@ANNUANNU-b7f 7 ай бұрын
In which grade these questions. Come
@deepaagarwal8743
@deepaagarwal8743 10 ай бұрын
Sir can you plz upload some trigno and geometry high level questions
@nunoalexandre6408
@nunoalexandre6408 10 ай бұрын
Love it!!!!!!!!!!!!
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@afshinfarzaadi1371
@afshinfarzaadi1371 10 ай бұрын
👍
@misterenter-iz7rz
@misterenter-iz7rz 10 ай бұрын
radius r is easy to determine, r^2+r^2/4=5/4 r^2=5, r^2=4, r=2, but it is difficult to determine the area of the right angled triangle inscribed in the upper part of sector.😅
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@HeywoodUmanoff
@HeywoodUmanoff 10 ай бұрын
How do we know that C, D and A are colinear?
@hemalathar8842
@hemalathar8842 10 ай бұрын
Is it possible for them to ask this in 10th board exam?
@frooooo7896
@frooooo7896 10 ай бұрын
Why is the area not just 0.5 x 1 x 2. Since the sides of the pink triangle must be 2 and 1.?
@HeywoodUmanoff
@HeywoodUmanoff 10 ай бұрын
As it turns out, the sides of the pink triangle don't have to be 2 and 1. In fact, the legs turn out to be 1.74 and 1.40, with the angle between the shorter leg and the hypotenuse = 51.14 degrees. This is different from the 63.43 degree angle between the shorter leg and hypotenuse of the 1, sqrt5 and 2 side lengths of right triangle DOB. I was thrown off by this issue initially as well.
@xsilata
@xsilata 10 ай бұрын
Triangles AOD and ABC are similar. The calculation is easy.
@PreMath
@PreMath 10 ай бұрын
Thanks
@vimsriani
@vimsriani 10 ай бұрын
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@RazvanMihaeanu
@RazvanMihaeanu 10 ай бұрын
Thank God for the right angle 'cause otherwise... we would have been screwed!
@pralhadraochavan5179
@pralhadraochavan5179 10 ай бұрын
Good evening sir
@PreMath
@PreMath 10 ай бұрын
Hello dear ❤️
@devondevon4366
@devondevon4366 10 ай бұрын
1
@Weizsaecker
@Weizsaecker 9 ай бұрын
0:23 Stop! How does he know that DE = DA? Is there a theorem describing a pythagorean triangle in a quarter circle?
@wackojacko3962
@wackojacko3962 10 ай бұрын
If Schrodinger's Cat could have thought outside the box while inside the box, could the cat find the square root of a tree? Just curious...🙂
@billycox475
@billycox475 10 ай бұрын
Well done, dad jokes always welcome!
@PreMath
@PreMath 10 ай бұрын
Thanks❤️
@edsznyter1437
@edsznyter1437 5 ай бұрын
You're really overcomplicating things. Triangles ADO and ACB are similar. The ratio of the hypotenuses is 4:Sqrt[5]. Thus, the ratio of the areas is the square of that, 16:5. So [ACB]=16/5. [DCB]=[ACB]-2[ADO]=16/5-10/5=6/5.
@Dinhnguyen-km6zd
@Dinhnguyen-km6zd Ай бұрын
S(ABD)=2=1/2 BD x BC. => BC=4/√ 5. Therom pytago=> CD=√ (9/5). End S(BCD) =√ (144/25) = 1,2
@edsznyter1437
@edsznyter1437 5 ай бұрын
You're really overcomplicating things. Triangles ADO and ACB are similar. The ratio of the hypotenuses is 4:Sqrt[5]. Thus, the ratio of the areas is the square of that, 16:5. So [ACB]=16/5. [DCB]=[ACB]-2[ADO]=16/5-10/5=6/5.
ТЮРЕМЩИК В БОКСЕ! #shorts
00:58
HARD_MMA
Рет қаралды 1,5 МЛН
Happy birthday to you by Secret Vlog
00:12
Secret Vlog
Рет қаралды 6 МЛН
Viral question from China
8:04
MindYourDecisions
Рет қаралды 726 М.
Can you solve for the area?
8:02
MindYourDecisions
Рет қаралды 152 М.
A Very Nice Geometry Challenge | 3 Different Methods to Solve
20:47
ТЮРЕМЩИК В БОКСЕ! #shorts
00:58
HARD_MMA
Рет қаралды 1,5 МЛН