Can you find the Blue shaded equilateral triangle? | (Step-by-step explanation) |

  Рет қаралды 16,067

PreMath

PreMath

Күн бұрын

Learn how to find the Blue shaded equilateral triangle. Important Geometry and algebra skills are also explained: Equilateral triangle; Isosceles triangle; area of a triangle formula. Step-by-step tutorial by PreMath.com
Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
Step-by-step tutorial by PreMath.com
• Can you find the Blue ...
Need help with solving this Math Olympiad Question? You're in the right place!
I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
/ premath
Can you find the Blue shaded equilateral triangle? | (Step-by-step explanation) | #math #maths
Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
#FindAreaOfBlueTriangle #AreaOfTriangle #GeometryMath #MathOlympiad #Triangles #RightTriangles #AreaOfSquare #AreaOfRectangle #PythagoreanTheorem #AreaOfTriangle #IsoscelesTriangle #EquilateralTriangle
#PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #AreaOfTriangles #AreaOfRectangle #Length #Width
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Square
imo
Competitive Exams
Competitive Exam
Area of a Triangle
Area of a Triangle formula
premath
premaths
Pythagorean Theorem
Similar triangles
Equilateral triangle
Isosceles triangle
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun
Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Пікірлер: 46
@KAvi_YA666
@KAvi_YA666 Жыл бұрын
Thanks for video.Good luck sir!!!!!!!!!!!!!!!!
@PreMath
@PreMath Жыл бұрын
Thank you too❤️ You are awesome. Keep it up 👍
@parthtomar6987
@parthtomar6987 Жыл бұрын
Accurate solution with full efficiency
@PreMath
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@arthurschwieger82
@arthurschwieger82 Жыл бұрын
It is always fun to see the different ways to solve problems. I started with triangle ACD to get the length of CD = 6√3 (this is from the side relationship of a 30/60/90 triangle, 1-2-√3). CD=BE so I can get AB using the same relationship. AB = 6. To get the length of DE, I took 18 and subtracted AB (6) to get 12. The area of an isosceles triangle is (√3/4)*DE² = 36√3.
@tombufford136
@tombufford136 Жыл бұрын
At a quick glance. With Angle ADC and AC ,AD and DC are calculated.EB = DC. With angle AEB, AE and AB are calculated. ED is = AC -AB. Area = half base * height= 0.5 ED * ED*0.5*(sqrt(3).
@MrPaulc222
@MrPaulc222 Жыл бұрын
Good explanation. I didn't do the isosceles route as I worked solely with the 30-60-90 elements. Bottom right triangle has 18, 18/sqrt(3) and 36/sqrt(3) as its sides. Therefore, the upper triangle has 36/3 as its short side, meaning the equilateral has sides of 12. 12^2 - 6^2 =108 so height of sqrt(108). 6*sqrt(108) simplifies to 36*sqrt(3) so 62.35(2dp).
@santiagoarosam430
@santiagoarosam430 Жыл бұрын
Ángulo A=30º+30º=60º → AC=18=DC√3 → DC=6√3 =EB → AB=6 → BC=18-6=12 =Lado del triángulo equilátero azul → Área Azul =12*6√3/2 =36√3 =62.3538 Gracias y un saludo cordial.
@unknownidentity2846
@unknownidentity2846 Жыл бұрын
Very clever solution.👍 Here is my way using trigonometry: Right triangle ACD: CD/AC = tan(∠CAD) CD/18 = tan(180°−90°−60°) CD/18 = tan(30°) CD/18 = sin(30°)/cos(30°) CD/18 = (1/2)/(√3/2) CD/18 = 1/√3 CD = 18/√3 The triangles ACD and ABE are similar (30°-60°-90°): CD:AC:AD = AB:BE:AE with CD = BE CD/AC = AB/BE CD/AC = AB/CD AB = CD²/AC AB = (18/√3)²/18 AB = (18²/3)/18 AB = 18/3 = 6 Side length of the equilateral triangle DEF: s = DE = BC = AC − AB = 18 − 6 = 12 Area of the equilateral triangle DEF: A = (√3/4)s² = (√3/4)*12² = 36√3 Best regards from Germany
@bhavesh8083
@bhavesh8083 Жыл бұрын
If we take triangle ADC by tan 60 Dc = 18root 3 ,and then find the area of triangle =27 root 3
@soniamariadasilveira7003
@soniamariadasilveira7003 Жыл бұрын
Obrigada professor!
@AmirgabYT2185
@AmirgabYT2185 9 ай бұрын
S(tr)=36√3≈62,28
@bigm383
@bigm383 Жыл бұрын
Thanks Professor!❤️😁
@williamwingo4740
@williamwingo4740 Жыл бұрын
Lots of 30-60-90 triangles in this one. All angles are in degrees. Angle ADF = 90 + 60 - 60 = 90; so triangle ADF is 30-60-90. This means DF = AD/√3. Considering triangle ADC, which is also 30-60-90: sin 60 = (√3)/2 = 18/AD ; cross-multiply and (18)(2) = (√3)(AD) = 36; so AD = 36/√3 = 36√3/3 = 12√3. So DF = (12)(√3)/(√3) = 12. Drop the altitude of triangle DEF from point F, separating the equilateral into two more 30-60-90's. The altitude is 12 sin 60 = (12)(√3)/2 = 6√3. Thus the area is (1/2)(12)(6√3) = 36√3. Carpe Diem. 🤠
@SK-gs6xb
@SK-gs6xb Жыл бұрын
AD = AC/Cos30= 36/√3 Side of the Equilateral triangle = FD = ADTan30 = 36/3= 12
@PreMath
@PreMath Жыл бұрын
Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@Mycroft616
@Mycroft616 Жыл бұрын
We were in lock step once we knew the side length of the Blue Triangle was 12, but I used a lot more of the 30°-60°-90° Triangle identity and the observation that BEDC is a rectangle to get there. 18 = CD × 3^(1/2) CD = 18/[3^(1/2)] CD = 6 × 3^(1/2) BE = CD BE = 6 × 3^(1/2) BE = AB × 3^(1/2) 6 × 3^(1/2) = AB × 3^(1/2) AB = 6 BC = AC - AB BC = 18 - 6 BC = 12 ED = BC ED = 12 EDIT: This can also be done without trigonometry by remembering that the perpendicular bisector of an equilateral triangle creates two more 30°-60°-90° triangles and the altitude of the Blue Triangle can be solved by the identity. Or by using Heron's Theorem.
@AndreasPfizenmaier-y7w
@AndreasPfizenmaier-y7w 4 ай бұрын
Area of the equilateral triangle : a^2/4*sqrt 3. a=12
@misterenter-iz7rz
@misterenter-iz7rz Жыл бұрын
Let s be the side of equilateral triangle, clearly AE=ED, and angle EAD=angleEDA, so AD=root 3 s, and thus 18=(root 3 s) root 3/2=3/2 s, so s=12,therefore the answer is (1/2)12 12 root 3/2=36root 3=62.35 approximately.😊
@PreMath
@PreMath Жыл бұрын
Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@trumpetbob15
@trumpetbob15 Жыл бұрын
Interesting approach. I did it slightly differently. Triangle ABE is 30-60-90 so if AB is x, then BE is x * root 3, which is also CD given rectangle BCDE. However, CD is shorter leg of 30-60-90 triangle ACD so AC is the result CD * root 3 = x * root 3 * root 3 = 3x = 18. Thus, x = 6, BC = 18 - x = 12 = DE, which is also the side length of the shaded triangle and we get the same area after doing the same final calculations.
@soli9mana-soli4953
@soli9mana-soli4953 Жыл бұрын
Angle in A is 60°, DAC angle is 30° so EAD = 60° - DAC = 30° EDA is 30° because complementary, so triangle AED is iscosceles and AE = ED triangles 30°,60°,90° have sides X,2X,X√ 3, so if you know one side you know all sides On ADC it is X√ 3 = 18 then DC = 18/√ 3 now you ca see that DC = EB so repeat on ABE Y,2Y,Y√ 3 Y√ 3 = 18/√ 3 Y = 6 AE = 2*Y = 12 then ED = 12 Area = 12²*√ 3 /4 = 36√ 3
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
AE=l per costruzione...teorema seni:18-l:sin30=l:sin90..l=12
@PreMath
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@murdock5537
@murdock5537 Жыл бұрын
Nice! AC = 18; DAC = φ = 30° = BEA = FAD → CD = 18/√3 = 6√3 → AD = 12√3 → AF = 24 → EF = 12 = AD = DF → ED/2 = 6 = EM = DM → MF = 6√3 → area ∆DFE = (1/2)12(6√3) = 36√3
@PreMath
@PreMath Жыл бұрын
Excellent! Thanks for sharing! Cheers! You are awesome. Keep it up 👍
@devondevon4366
@devondevon4366 Жыл бұрын
Answer 36 sqrt 3 or 62.35 Since 18 = sqrt 324 = sqrt 3 *sqrt 108 and triangle ACD is a 30 -60-90 triangle, then DC the sqrt 108= 6 sqrt 3. Hence AD = 12 sqrt 3 (or twice DC) Hence EB =DC 6 sqrt 3 Since triangle ABE is also a 30-60-90 right triangle AB= 6 (since EB is sqrt 3 * AB) Hence BC = (AC-AB) = 18- 6 =12 Hence the length of the equilateral triangle is 12 Area = (sqrt 3 * side^2)/4 = sqrt 3 * 12^2/4 = 36 sqrt 3 or 62.35
@raya.pawley3563
@raya.pawley3563 Жыл бұрын
Thank you
@michaelkouzmin281
@michaelkouzmin281 Жыл бұрын
Just another solution: Let x= ED, so AB= 18-x; DC/18=tan(30) => DC=18*tan(30); BE/AB= tan(60) => BE= (18-x)*tan(60); DC=BE; 18*tan(30)=(18-x)*tan(60); x=18(1-tan(30)/tan(60)) = 18*(1-1/3) =12; Ablue = x^2*sqrt(3)/4=36*sqrt(3) = approx 62.35 sq units.
@Istaphobic
@Istaphobic Жыл бұрын
I wanted to challenge myself to see if I could do it without any trigonometry and presuming no knowledge of any 30-60-90 triangle side ratio relationships. Just wanted to use pure geometry. Here's what I got: Given △ACD with ∡ADC = 60° ⇒ ∡CAD = 30° (angles of a triangle), such that △ACD has angles 30, 60 and 90 and △ABE also has angles 30, 60 and 90. ∴ △ACD ≅ △ABE (similar triangles - angle, angle, angle). Let length BC = x (which is also the length of the side of the equilateral triangle as BC = ED), such that AB = AC - BC = 18 - x. Let BE = y = CD. Now, CD/AC = AB/BE, such that y/18 = (18 - x)/y, and y² = 18(18 - x). Now, ∡ADE = ∡CDE - ∡ADC = 90° - 60° = 30°. ∴ △ADE is an isosceles triangle, as ∡DAE = ∡ADE = 30° ⇒ AE = ED = x. In △AC, we have lengths AB = 18 - x, BE = y and AE = x. Using Pythagoras, AE² = AB² + BE² ⇒ (18 - x)² + y² = x². From above, we have y² = 18(18 - x), so (18 - x)² + 18(18 - x) = x². ⇒ 324 - 36x + x² + 324 - 18x = x². ⇒ 54x = 648; and ∴ x = 12. Now, we know all sides of equilateral triangle △DEF are equal and length ED = x = 12, such that ED = EF = DF = 12 (given). Drawing the height of the triangle h from point F to point G, which is orthogonal to ED, the height is the angle bisector which bisects line ED such that EG = 6. Using Pythagoras height FG = h and FG² = EF² - EG² = 144 - 36, such that FG = h = 6√3. Area △DEF = [△DEF] = ½.x.h = ½.(12).(6√3) = (6).(6√3), and ∴ [△DEF] = 36√3 units².
@devondevon4366
@devondevon4366 Жыл бұрын
36 sqrt 3 or 63.25 It is an easy problem given that triangles ABC and ADC are 30-60- 90; hence the three sides are x, sqrt 3x, and 2x. 18= sqrt 324 = sqrt 3*sqrt 108. Therefore DC = sqrt 108 since it faces the 30 degrees angle. Hence EB also = sqrt 108 or sqrt 3^ sqrt 36 or 6 sqrt 3. Hence AB= 6 . Hence BC=12 (18-6) which means that ED= 12. Hence each side of the equilateral triangle is 12. Hence the area = sqrt 3/4 * 12^2 = sqrt 3/4*144 or sqrt 3 *144/4 = sqrt 3 * 36 Answer The formula for the area of an equilateral is sqrt 3/4 *s^2. This comes from the formulae for the area of all triangles 1/2 AB sine C = 1/2AB sine 60 (since all angles of an equilateral are 60) = 1/2 AB sqrt 3/2 ( Since Sine 60 degrees sqrt 3/2) = sqrt 3/4 *s^2
@Copernicusfreud
@Copernicusfreud Жыл бұрын
Yay! I solved the problem .
@dadugiri3790
@dadugiri3790 Жыл бұрын
Why don't you use Heron's formula for calculating area of the blue triangle after finding the length of the rectangle/the triangle as 12units?
@ybodoN
@ybodoN Жыл бұрын
In the case of an equilateral triangle, even Heron's formula reduces to _¼ a² √3_ 😉
@RajeshGupta-xz4mt
@RajeshGupta-xz4mt Жыл бұрын
Find the area of AED triangle
@arnavkange1487
@arnavkange1487 Жыл бұрын
Sir pls include some algebra sums side by side
@PreMath
@PreMath Жыл бұрын
Sure! Keep watching.... You are awesome. Keep it up 👍
@mohanramachandran4550
@mohanramachandran4550 Жыл бұрын
Very simple sir All are 30°, 60°, 90° Triangle ((18÷√(3)÷√(3))^2)√(3)÷4 = 62 .353829
@JSSTyger
@JSSTyger Жыл бұрын
I could be wrong because i often scribble at a 100mph but i think the answer is 36sqrt(3).
@alster724
@alster724 Жыл бұрын
Got it
@wackojacko3962
@wackojacko3962 Жыл бұрын
I've regressed from pencil and paper and solved old school with stylus and clay tablet! 🙂
@PreMath
@PreMath Жыл бұрын
Thanks for your feedback! Cheers! 😀 You are awesome. Keep it up 👍
@thomakondaciu6417
@thomakondaciu6417 Жыл бұрын
S=3.9
@marioalb9726
@marioalb9726 Жыл бұрын
Height of rectangle: H = 18 / tan 60° H = 10,39 cm Base of triangle: b = H . tan 30° b = 6 cm Base of rectangle B = 18 - b B = 12 cm Area of equilateral triangle: A = √3/4 . B² A = 62,35 cm² ( Solved √ )
@rbd77
@rbd77 Жыл бұрын
That was a long way around.
@TheBengal_Tiger
@TheBengal_Tiger Жыл бұрын
Who is the face behind this brilliance! Whats ur twitter handle ?
Random Emoji Beatbox Challenge #beatbox #tiktok
00:47
BeatboxJCOP
Рет қаралды 62 МЛН
I tricked MrBeast into giving me his channel
00:58
Jesser
Рет қаралды 30 МЛН
find the missing angle!!
10:34
Michael Penn
Рет қаралды 87 М.
How To Solve For The Area - Viral Math Problem
5:48
MindYourDecisions
Рет қаралды 2,8 МЛН
Indian l Olympiad Math Algebric Problem l Tricky Solution for x?
12:38
Random Emoji Beatbox Challenge #beatbox #tiktok
00:47
BeatboxJCOP
Рет қаралды 62 МЛН