Catalan numbers derived!

  Рет қаралды 20,949

PenguinMaths

PenguinMaths

Күн бұрын

Пікірлер: 30
@StellarWeb008
@StellarWeb008 2 ай бұрын
This guy is a universal treasure. First he explained the generating function. Then he even derived the combinatorics formula in just 5 minutes, like a piece of cake, without even making us feel that we are dealing with such a complex function. Great job man!! One day your channel will rule the world of math!!
@anuragsingh9995
@anuragsingh9995 4 жыл бұрын
This is by far the best video I have ever seen on Catalan numbers. All I ever saw was ways to compute them. This is brain orgasm! Thanks for the efforts.
@TechToppers
@TechToppers Жыл бұрын
take a moment to appreciate that he went over a lot of cool combinatorial ideas(man they're useful for solving problems I swear), and then went over generating functions showing that all math is really connected... I mean I've seen almost all the ideas before, but the presentation is just amazing. i love how everything comes one after another. I've learned some new stuff here as well. I really love your video sir. thanks a lot for this!
@jamesking2439
@jamesking2439 2 жыл бұрын
Okay, the fact that you can use a polynomial to represent the number of paths and the algebra takes you the rest of the way is blowing my mind.
@tech_buddy
@tech_buddy Жыл бұрын
second method was just amazing i was like wow it was a week since i was struggling to know visual reason behind formula and you just nailed it🎉🎉
@nshaff3r
@nshaff3r 2 жыл бұрын
Amazing video! You explained some of these difficult concepts really well.
@backtobackcp-codechefxcode7872
@backtobackcp-codechefxcode7872 3 жыл бұрын
Ah, I was looking for this video after failing to solve a Computer program to evaluate bracket combinations. Thank you ! Really informative video ! #subscribed :)
@蘇偉華-p4b
@蘇偉華-p4b 2 жыл бұрын
Fabulous video. Very easy to understand and really make sense.
@ludovicbedard7922
@ludovicbedard7922 Жыл бұрын
Wow. I'm only at 9min, and I love that explanation of a generating function.
@tech_buddy
@tech_buddy Жыл бұрын
please restart making videos they are just lit🔥🔥🔥
@PenguinMaths
@PenguinMaths Жыл бұрын
Thanks for the kind words! I would like to, it’s just hard finding time with a full time job and separate programming projects I’m working on
@liyi-hua2111
@liyi-hua2111 Жыл бұрын
15:19 i don’t see how it can be reverse easily if we didn’t know which section is the red section.
@yifuxero5408
@yifuxero5408 Жыл бұрын
Easy recursive way to get the Catalan numbers: Begin (1, 1,) dot (1, 1) = 2. Place the 2 on the right of (1, 1,) getting (1, 1, 2). Reverse and take the dot product of (1, 1, 2) and (2, 1, 1), getting (2 + 1 + 2) = 5. Then place the 5 to the right of 1, 1, 2, 5 and take the dot product of the reverse,(5, 2, 1, 1) getting (5 + 2 + 2 + 5) = 14. Put 14 to the right of the ongoing string getting (1, 1, 2, 5, 14) and take the dot product of the reverse, so dot product of (1, 1, 2, 5, 14) and (14, 5, 2, 1, 1) = (14 + 5 + 4 + 5 + 14)
@wyattstevens8574
@wyattstevens8574 Жыл бұрын
I know that one!
@amirjutt0
@amirjutt0 9 ай бұрын
Man. You deserve way more than it. I usually don't give good rating to feakin math tutorials. This one was really nice. keep it up man
@muralidharansomasundaram1509
@muralidharansomasundaram1509 2 жыл бұрын
Nice combinatorial proof.
@domferrel31
@domferrel31 4 жыл бұрын
hey can I ask how you did that blob thing can I know how it goes like I didn't understood that one thing. Any references ... Thank you.
@PenguinMaths
@PenguinMaths 4 жыл бұрын
Dom Ferrel The diagram with the blobs is called a wasp waist factorisation. This pdf looks pretty good for explaining it: igm.univ-mlv.fr/~fpsac/FPSAC02/ARTICLES/Rensburg.pdf
@domferrel31
@domferrel31 4 жыл бұрын
@@PenguinMaths Thank you . Video was very informative and nice visuals .
@isaacdouglas1119
@isaacdouglas1119 2 жыл бұрын
Super illustrative animations! What software do you use?
@davethesid8960
@davethesid8960 3 ай бұрын
Prob Manim.
@jakeaustria5445
@jakeaustria5445 3 ай бұрын
Thank You
@frew5940
@frew5940 Жыл бұрын
Nice intro 👌
@replicaacliper
@replicaacliper 5 жыл бұрын
Unless I'm missing something here, can't there only be 1 path with exceedence n? Wouldn't that contradict your reasoning?
@PenguinMaths
@PenguinMaths 5 жыл бұрын
Nope. For example, all the exceedance groups for n=2 are drawn on the screen at 15:40, and you can see that the group with exceedance = n = 2 contains two paths
@replicaacliper
@replicaacliper 5 жыл бұрын
@@PenguinMaths Ah I see. I misinterpreted the meaning of exceedence.
@fur1ous112
@fur1ous112 2 жыл бұрын
15:36 not understandable
@archangecamilien1879
@archangecamilien1879 9 ай бұрын
It comes down to counting the number of positions for say, the ones that turn to the right...like, which 3 among the 6 will be turned to the right, etc...number of ways of choosing 3 from 6, so 6 choose 3...but, to avoid repetition, divide by 3!, etc, because ((())) is the same if we switch the first two (, etc, so (6 choose 3)/(3!)...unless I'm forgetting something, lol...
@MrNacknime
@MrNacknime 3 жыл бұрын
Your picture is wrong, it should either count from 0 to 2n or from 1 to 2n+1, as the way you draw it currently, there is an odd number of steps (i.e. parentheses) from 1 to 2n
@rishabhmishra9611
@rishabhmishra9611 4 жыл бұрын
Awesome
Catalan Numbers - Numberphile
13:16
Numberphile
Рет қаралды 325 М.
The Most Important Sequence: The Catalan Numbers
6:57
SackVideo
Рет қаралды 51 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Catalan Numbers - On the Right Path
14:34
Mostly Mental
Рет қаралды 1,4 М.
Catalan numbers
16:11
CSU Mathematics
Рет қаралды 2,3 М.
Catalan's Conjecture - Numberphile
8:06
Numberphile
Рет қаралды 1,7 МЛН
Programming with Math | The Lambda Calculus
21:48
Eyesomorphic
Рет қаралды 246 М.
Counting with Calculus: The Magic of Generating Functions
21:52
Catalan numbers are not in Catalan | DDC #2
11:13
Mathemaniac
Рет қаралды 14 М.
Counting Lesson 6: Catalan Numbers
23:07
djdmath
Рет қаралды 23 М.
Vieta Jumping and Problem 6 | Animated Proof
11:33
PenguinMaths
Рет қаралды 48 М.