Cauchy's Theorem in group theory

  Рет қаралды 11,071

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 23
@SreenathSreekrishna
@SreenathSreekrishna Ай бұрын
Wow! This is kind of like a generalization of Fermat's little theorem, but for any group. Thanks for sharing this with us!
@minamagdy4126
@minamagdy4126 Ай бұрын
FLT is more of a for-all statement while here we have an existence statement. They do feel linked in some way, though...
@Noam_.Menashe
@Noam_.Menashe Ай бұрын
Fermat's little theorem is just Lagrange's theorem (order of subgroup must divide order of group) on a multiplicative group {1,2,..p-1} where p is prime and we take things modulo p. Specifically using the sub-group generated by powers of any element.
@Adraria8
@Adraria8 Ай бұрын
Really cool theorem, REALLY cool proof!
@brandonwillnecker8060
@brandonwillnecker8060 Ай бұрын
6:49 mp being Michael Penn?😂
@joseluishablutzelaceijas928
@joseluishablutzelaceijas928 Ай бұрын
Interesting is also noting that the claim at 17:17 implies that the number of distinct elements of order p is a multiple of p.
@goodplacetostop2973
@goodplacetostop2973 Ай бұрын
18:48
@natepolidoro4565
@natepolidoro4565 Ай бұрын
Augustin-Louis Cauchy was a legend
@kumaraditya829
@kumaraditya829 11 күн бұрын
Thanks a lot Michael….Abstract Algebra could not have been explained in any better and crude way than this!
@naffouri
@naffouri Ай бұрын
This is technically proving a stronger statement: that there is at least p-1 elements of order p
@addafarouk839
@addafarouk839 Ай бұрын
A very constructive and beautiful proof.❤
@joshuagiir
@joshuagiir Ай бұрын
we love mp!!!
@seedmole
@seedmole Ай бұрын
Nice, the theorem basically describes a bunch of what I've picked up about modulo mathematics through stuff like experimental music making techniques.
@armanavagyan1876
@armanavagyan1876 Ай бұрын
Thanks for sharing every day a new video ☺
@azur6830
@azur6830 Ай бұрын
Exactly what i needed 😂
@Alan-zf2tt
@Alan-zf2tt Ай бұрын
Sometimes i think that precise definitions take away some of the beauty that happens in math. And then I ponder that sequences of guided operations can be defined in a very precise way and doing so has a beauty of its own.
@richardchapman1592
@richardchapman1592 Ай бұрын
Was short of the what D(n)gon is a generalisation of so missed the connection to prime factors.
@addafarouk839
@addafarouk839 Ай бұрын
We can therefore conclude, as a corollary, that every group of prime order is cyclic.
@shoryaprakash8945
@shoryaprakash8945 Ай бұрын
I remember this proof this is quite an elegant way to prove it. There is an another way to prove this i.e. by induction.
@martinb3000
@martinb3000 Ай бұрын
11:55 I don't get it. In the illustrative p=3 case, why use elements from the equivalence classes for p=4? Shouldn't it be g1 g2 g3, g2 g3 g1, g3 g1 g2, and "multiples" of those?
@fluffiness100
@fluffiness100 Ай бұрын
The last entry is the product of g2 inverse and g1 inverse, so there are only 3 entries in total. As stated beforehand, the last entry is determined entirely by the previous entries.
@tornation5609
@tornation5609 Ай бұрын
Correction: this theorem is just a consequence of Lagrange's Theorem
@eartphoze
@eartphoze Ай бұрын
in my own written words, I believe explaing is more important than interpreting. identity of a group, as the last mark of chalk suggest, the moon is made of chalk. Explained through terms inside parenthesis given text over video, speed over time and space. Poetry interpreted not compiled time, only run time. boolean = false.
A questionable factorial problem
18:46
Michael Penn
Рет қаралды 7 М.
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 199 М.
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
What is Group Theory? - Group Theory Ep. 1
31:13
Nemean
Рет қаралды 1,1 МЛН
Kepler’s Impossible Equation
22:42
Welch Labs
Рет қаралды 242 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 416 М.
Euler's formula with introductory group theory
24:28
3Blue1Brown
Рет қаралды 2,5 МЛН
The strange cousin of the complex numbers -- the dual numbers.
19:14
The Subfactorial is Hilarious
24:00
Wrath of Math
Рет қаралды 201 М.
why is the power mean so important?
18:56
Michael Penn
Рет қаралды 11 М.
Galois Theory Explained Simply
14:45
Math Visualized
Рет қаралды 483 М.
thanks viewer for this nice limit!
14:32
Michael Penn
Рет қаралды 12 М.
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН