Causality and Propagators in Free Klein-Gordon QFT

  Рет қаралды 4,521

Nick Heumann University

Nick Heumann University

Күн бұрын

Пікірлер: 29
@tillerbrady6624
@tillerbrady6624 Жыл бұрын
At 10:00, the change of variables V shouldn’t have a square on it for (x-x_0)^2.
@NickHeumannUniversity
@NickHeumannUniversity Жыл бұрын
You are correct! Thank you for noticing! I'll pin this for future reference
@quantumworld9434
@quantumworld9434 Жыл бұрын
I've watched many lecture series on qft but your video lectures gave me proper understanding of qft.
@NickHeumannUniversity
@NickHeumannUniversity Жыл бұрын
Thank you! I do my best to make the lectures easy to follow
@RobertBabani
@RobertBabani 4 ай бұрын
The best introduction to Quantum Field theory I have ever seen, you have implemented what I have been wanting to see for 61 years, using Bob’s Baby step approach to derive the propagator for the Klein Gordon Equation, thank you so much, if you are ever in Albuquerque New Mexico, let’s meet at the Olive Garden and I’ll have my favorite, fettucine alfredo with broccoli, you totally rock, thank you, thank you
@NickHeumannUniversity
@NickHeumannUniversity 4 ай бұрын
Thank you for the kind comment! I'm glad you enjoyed the lecture! Unfortunately, I'm half a world away, but I am honored by the offer!
@billdicklechips
@billdicklechips 3 ай бұрын
You good sir are underappreciated. This helped immensely with my QFT homework.
@nirajangupta7406
@nirajangupta7406 Жыл бұрын
Finally, Nick sir remembered his channel's password😉😉. Anyway, I am so happy you uploaded a QFT video after such a long time.
@kevinowens1
@kevinowens1 Жыл бұрын
You were born to teach Physics my friend. Please keep going. You saved my neck in Electrodynamics. I wish you had taught other chapters like 3, 4 and 5. What you gave was priceless! it helped me understand it, not just work problems. Thank you
@NickHeumannUniversity
@NickHeumannUniversity Жыл бұрын
Thank you so much! I'm glad I was able to help!
@erikstephens6370
@erikstephens6370 Жыл бұрын
50:53-51:40, Keep in mind, this transformation is only possible if x-y is a spacelike vector and not a timelike one. This makes our commutator go to zero for x, y that are too far apart to "communicate" according to special relativity. Doing the integral for the timelike case does not give zero (it doesn't converge interestingly enough).
@jasonpalin4521
@jasonpalin4521 Жыл бұрын
Glad to see you back - and for QFT!
@dondada2096
@dondada2096 Жыл бұрын
Thank you so much for uploading again!
@HansTube1
@HansTube1 Жыл бұрын
Thank you Nick. Hopefully we wont wait another 8 months for the next video 😄
@kevinowens1
@kevinowens1 Жыл бұрын
Thanks!
@NickHeumannUniversity
@NickHeumannUniversity Жыл бұрын
Thank you!
@zanxder7536
@zanxder7536 Жыл бұрын
I recently had my QFT exam's it would have been great if it was uploaded earlier.
@zanxder7536
@zanxder7536 Жыл бұрын
thanks for the awesome QFT content though.
@NickHeumannUniversity
@NickHeumannUniversity Жыл бұрын
My apologies. It's been a tough year, and a lot of things hindered me from making videos. I will do my best to stay on track now!
@petershotts8571
@petershotts8571 10 ай бұрын
Thank you so much for all your videos. I really appreciate your clarity and detail. I am confused, however, when you consider the case of D(x-y) when x0-y0=t whilst xi-yi=0. I follow the maths when you show that as t tends to infinity x0-y0 is finite. However I do not see what the problem is. If the zero component of x is the time component why shouldn't there still be a non-zero value for x0-y0 as t tends to infinity? Given that the particle remains in the same place, why does this contradict causality? Peter
@harshit3602
@harshit3602 Жыл бұрын
Plz upload full qft
@luisbielmillan8467
@luisbielmillan8467 9 ай бұрын
very very useful. My teacher just presents the conclusion with barely any explanation ...
@Dirac_0
@Dirac_0 7 ай бұрын
how do you find the exponential decrease for time like case. When you let t goes to infinity. Is there some kind of derivation ?
@Dirac_0
@Dirac_0 7 ай бұрын
i found it :)
@SagnikSaha-cj6nl
@SagnikSaha-cj6nl Ай бұрын
Thank you very helpful
@onnilattu9138
@onnilattu9138 Жыл бұрын
Awesome videos but brother PLEASE go back to the dark background lmao
@tillerbrady6624
@tillerbrady6624 Жыл бұрын
Why do you always say “propagate in an arbitrarily short period of time”? Is there a reason you add the arbitrarily short?
@NickHeumannUniversity
@NickHeumannUniversity Жыл бұрын
It means "in any short amount of time", meaning that there is no limit, and thus, that it can surpass the speed of causality (speed of light)
@youtubesucks1885
@youtubesucks1885 11 ай бұрын
Will you do some vidoes about Yang-Mills theory and interacting QFTs? As far as I am aware every video until now was about the trivial free case.
Why Relativity Breaks the Schrodinger Equation
17:09
Richard Behiel
Рет қаралды 147 М.
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
Dirac Equation: Free Particle at Rest
13:01
Richard Behiel
Рет қаралды 51 М.
Interpretation of the Klein-Gordon Field and Bose-Einstein Statistics
23:01
Nick Heumann University
Рет қаралды 2,8 М.
The Mystery of Spinors
1:09:42
Richard Behiel
Рет қаралды 1 МЛН
Quantizing the Klein-Gordon Field as Harmonic Oscillators - FULLY EXPLAINED!
1:25:41
Nick Heumann University
Рет қаралды 13 М.
Symmetries & Conservation Laws: A (Physics) Love Story
15:51
Physics with Elliot
Рет қаралды 109 М.
Relativistic Quantum Waves (Klein-Gordon Equation)
46:02
Richard Behiel
Рет қаралды 78 М.
Lecture 1: Gauge Theory for Nonexperts
59:09
Timothy Nguyen
Рет қаралды 35 М.
Why we need QFT & Derivation of Klein-Gordon Langriangian Density
33:23
Nick Heumann University
Рет қаралды 15 М.
Deriving the Dirac Equation
16:34
Richard Behiel
Рет қаралды 116 М.
To Understand the Fourier Transform, Start From Quantum Mechanics
31:37
Physics with Elliot
Рет қаралды 523 М.