Chebyshev Polynomials | Theory & Practice

  Рет қаралды 19,723

Laplace Academy

Laplace Academy

Күн бұрын

Пікірлер: 8
@bradlanducci9011
@bradlanducci9011 Жыл бұрын
Very informative, thanks!
@LaplaceAcademy
@LaplaceAcademy Жыл бұрын
You're welcome! I'm glad you liked it.
@imeric7817
@imeric7817 2 жыл бұрын
Great video with nice examples!
@LaplaceAcademy
@LaplaceAcademy Жыл бұрын
Glad you liked it!
@karla1995ize
@karla1995ize 11 ай бұрын
Excelente contenido Bro
@justinsostre8470
@justinsostre8470 Жыл бұрын
The reason your recursion is slow is because you used a naive approach instead of, perhaps, tail recursion.
@LaplaceAcademy
@LaplaceAcademy Жыл бұрын
But anyways, there always exists a faster way than recursion of any type.
@holyshit922
@holyshit922 Жыл бұрын
@@LaplaceAcademy there exists formula for Chebyshov polynomials Here is how i found it 1. From cosine of sum and cosine of difference derive recurrence relation for Chebyshov polynomials 2. Define exponential generating functiom 3. Plug it in recurrence relation 4. Solve nonhomogeneous linear differential equation of second order with constant coefficients and initial conditions (Here suitable method is Laplace transform in my opinion) 5. Calculate second derivative of solution of thiequation in step 4 6. Use Leibniz product rule to calculate nth derivative of exponential generating function of Chebyshov polynomial and evaluate it at zero After these steps we should get T_{n}(x) = sum({n \choose 2k}x^{n-2k}(x^2-1)^k,k=0..floor(n/2)) If we use binomial expansion to the (x^2-1)^k we will get T_{n}(x) = sum(binomial(n,2k)x^{n-2k}sum(binomial(k,m)x^{2m}(-1)^{k-m},m=0..k),k=0..floor(n/2)) So we will get double sum T_{n}(x) = sum(sum((-1)^{k-m}binomial(n,2k)binomial(k,m)x^{n+2m-2k},m=0..k),k=0..floor(n/2)) But how to calculate further I'm sure that it is possible to get single sum for all coefficients of Chebyshov polynomial but i dont know how to do it
Quintic Equation From Chebyshev Polynomial
22:20
blackpenredpen
Рет қаралды 68 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
What are...Chebyshev polynomials?
22:28
VisualMath
Рет қаралды 3,9 М.
What does the second derivative actually do in math and physics?
15:19
Intro to Chebyshev Polynomials
9:01
Physics and Math Lectures
Рет қаралды 46 М.
Is the Future of Linear Algebra.. Random?
35:11
Mutual Information
Рет қаралды 376 М.
The Continuity of Splines
1:13:50
Freya Holmér
Рет қаралды 1,4 МЛН
Creating Movies and Animations in Matlab
27:01
Christopher Lum
Рет қаралды 116 М.
Chebyshev Polynomials via cos(1°)
45:32
Mathoma
Рет қаралды 4,5 М.