Who's seen the movie IT? If you've seen it, tell us: 1) What country did you see it in? 2) On a scale from 0% - 100%, what's your rating of the movie? Check out the corresponding blog and other resources for this video at: deeplizard.com/learn/video/K3lX3Cltt4c
@sourajitsaha47245 жыл бұрын
Bangladesh, 95%
@victortarnovskiy84075 жыл бұрын
Russia, 90%. It is truly a masterpiece.
@rajeshviky5 жыл бұрын
Finland 83%
@林盟政5 жыл бұрын
Taiwan, IT version 85%, element-wise version 120%
@min-youngchoi38334 жыл бұрын
South Korea / 100% and might be overflow
@thepresistence59352 жыл бұрын
I literally wasted more than 6 hours watching this continuously and successfully completed 11 video. It's like watching a movie :) Thanks a lot, I am understanding everything.
@ioannis.g.tzolas6 жыл бұрын
Congratulations on the terrific content and style of presentation. Your videos are like watching a TV series (with tensors as heroes). Can't stop watching !!! Congratulations !
@deeplizard6 жыл бұрын
Wow! Tensors as super heros! Love it! Thank you! 📺
@mohammadsadilkhan18755 жыл бұрын
Correct me if I am wrong. This is the most interesting as well as a great resource for learning. Your idea of putting videos of pioneers in this field is truly marvellous.
@user-or7ji5hv8y6 жыл бұрын
Really finding this series rewarding. very much motivated to learn PyTorch.
@deeplizard6 жыл бұрын
Thank you, James! I'm glad to hear that!
@philtrem5 жыл бұрын
same !
@stormzrift45755 ай бұрын
This has been fantastic so far. The memes make it so much more engaging
@hzmuhabbet2 жыл бұрын
I am happy to find that channel, there's a great work here mate. Thanks for your efforts.
@_edwardedberg5 жыл бұрын
Dude.. your videos should be the world standard of neural network education.
@deeplizard5 жыл бұрын
Thank you, Edward!
@Brahma20125 жыл бұрын
This is one of the best trainings on PyTorch. The coverage is highly relevant and exhaustive. Thank you
@techfirsttamil6 жыл бұрын
No words to thank you guys. Always raising bar of quality content about deep learning. Heartly thanks from India
@deeplizard6 жыл бұрын
Thank you, Venkatesh! Appreciate that!
@bisnar13074 жыл бұрын
Thank you for this series. It's extremely helpful. Please continue teaching people more!
@saptarshidattaaot4 жыл бұрын
Will never ever forget element-wise operation
@kyle_bro4 жыл бұрын
This really is the highest level of content. 10/10
@sumanmondal21524 жыл бұрын
You're way of teaching is amazing !!
@grandson_f_phixis94804 ай бұрын
Bro brilliant work. Legendary!!
@harishjulapalli4484 жыл бұрын
Great Video. I got the concepts very clear now. Thanks a lot for your efforts.
@Gee.U5 жыл бұрын
this channel is a blessing, thank you!
@DanielWeikert6 жыл бұрын
Love you guys. Great video again. Highly appreciated.
@deeplizard6 жыл бұрын
Thanks Daniel! 🚀
@thepresistence59352 жыл бұрын
4:53 best moment :)
@haroldsu16964 жыл бұрын
really awesome lectures.
@ferielferiel50065 жыл бұрын
OOOh my god !!! I was watching this video late at night !! and you hell scared me
@deeplizard5 жыл бұрын
🤣🤣🤣🤣🤣
@Nikage234 жыл бұрын
I wish I'd found this explanations earlier
@herrmann53845 жыл бұрын
I dont get, why the order is changed, when you set a number for "dim": For example: t = torch.tensor([ [1,1,1,1], [2,2,2,2], [3,3,3,3] ]) print(t.shape) = [3,4] = 3 = first rows, 4 = then columns . But when you use the sum method: print(t.sum(dim = 0)) = tensor([6, 6, 6, 6]) dim = 0 : adds the columns and dim = 1 the rows.... why is it the other way around? Thanks so much!
@deeplizard5 жыл бұрын
Thinking in terms of rows and columns can be problematic when dealing with tensors because they are more abstract data structures. Instead of saying we have 3 rows and 4 columns. Let's say we have 3 things and for each of these we have 4 things. Where are the 3 things? dim=0 What are the 3 things? rank-1 tensors (arrays) of length 4 How do we sum rank-1 tensors together? via element-wise addition The last part (element-wise) is the key. When we take the sum with respect to dim=0, we are summing the elements that run on that dimension. If these elements are not numbers, the sum is an element-wise sum. Since each array has a length of 4 (4 indicies), the result has a length of 4. The same logic applies to dim=1. What are the 4 things. numbers How many groups of 4 things do we have? 3 This means we get 3 sums of 4 things. This idea extends to higher rank tensors as well. Let me know if this helps.
@hamedhojatian30985 жыл бұрын
Perfect! Thank you!
@deeplizard5 жыл бұрын
Hey Hamed - You are welcome!
@shanthalvasanth77824 жыл бұрын
It makes sense that with t being a 3x4 tensor, the output of t.sum(dim=0) has the shape (1x4) but I don't get why the output tensor resulting from t.sum(dim=1) does not have the shape (3x1) ? It is unintuitive that sum over dim=1 yields a 1x3 tensor. EDIT : Just looked up Pytorch documentation - apparently you need to pass 'keepdim=True' to retain the dimensions and get a (3x1) tensor when summing over dim=1.
@elibelash82385 жыл бұрын
Perfect, thank you.
@deeplizard5 жыл бұрын
Hey Eli - You are welcome!
@ilfat_khairullin3 жыл бұрын
Thank you!
@tingnews72736 жыл бұрын
I thought I have figure out the dim torch.sum(dim=0)。But when I see the torch.argmax(dim=0)。I confused again。 It appears to me the logic is oppersite about this two. When go to the nd-array. Things seem to go more complex。Is there any way I can get it crystal
@deeplizard6 жыл бұрын
你好刘新新 - The key is to remember that the reduction is element-wise unless we are working on the last dim. The last dim is always just an array of numbers (the scalar components). Suppose we have this tensor: t = [ [1,2,3,4], [0,0,0,0] ] How do we calculate t.sum(dim=0)? We do it by summing corresponding elements across dim-0. There exist two elements running along dim-0. This one: [1,2,3,4] And this one: [0,0,0,0] Since these are arrays, the sum must be element-wise. This gives us the following: [1+0,2+0,3+0,4+0] = [1,2,3,4] Now, with the argmax(dim=0) operation, it's the same only the operation is different. This time the operation is not sum, but argmax. Argmax gives us the index location of the max value. We have two possible index values, 0 or 1. This is because we are working with two elements. t[0] = [1,2,3,4] t[1] = [0,0,0,0] When we do the argmax, we argmax corresponding elements (element-wise) across dim-0. [argmax(1,0), argmax(2,0), argmax(3,0), argmax(4,0)] = [0,0,0,0] Let me know if this helps and if you still have questions. I think the best way to make this crystal is to create some random examples and practice working them out. It is tricky.
@tingnews72736 жыл бұрын
@@deeplizard Thank you for your reply. I spend some time to watch the video again and again ,read your reply and try it in code and calculate by pen. I think I get some intuition . But not that clear. I take it as a little progress . I think the most important thing to understand it is element-wise. base different dim . different element. I can figure out the argmax(dims=0) , use this perspective is element is a tensor ,so when we go through every scalar in the tensor , we ask the index of the tensor element. I found in the deep learning , if you want to understand more . you must get the basic ideas clear. I have doing the job for about 1 year more. Still so many basic concepts not that clear. Thank you very much.
@rubencg1956 жыл бұрын
Awesome!
@deeplizard6 жыл бұрын
Thanks Ruben! Really appreciate your comments!
@donfeto76362 жыл бұрын
love this
@reb56425 жыл бұрын
Thank you so much sir. Your video is so great
@deeplizard5 жыл бұрын
Hey REB - Thank you!
@marwaneboudraa99172 жыл бұрын
best explanations ever
@gactve21104 жыл бұрын
I would drop the bassy sound effect when you type, it's anoyying when usinf earphones. Except that, Great content! Keep it up!
@deeplizard4 жыл бұрын
Hey gactve - I appreciate the straight forward way you described the issue with the sound effect. Thanks! That sound has been removed in newer releases. 😊
@AnmolGargmed6 жыл бұрын
at 3:40, isn`t that rank 1 matrix ?
@deeplizard6 жыл бұрын
Hey Anmol - The tensor t at 3:40 is a rank 2 tensor. There are two indices required to access an element inside t. Refer here: deeplizard.com/learn/video/AiyK0idr4uM If it still isn't clear, let me know more about how you are thinking about it. Hope this helps.
@takeyoshix4 жыл бұрын
"You gotta step up your game, mate!"... care to share the link to that hilarious woman?
@deeplizard4 жыл бұрын
Link to her video in the description :D (Name: Sorelle)
@onePunch955 жыл бұрын
tensor([1, 2, 3, 4]) >>> t.sum(dim=1) tensor([10, 0]) In this case, why don't we get [10]?
@deeplizard5 жыл бұрын
Hi Satwik - I can't be sure because I cannot see the value of the tensor t. Note that the tensor shown tensor([1,2,3,4]) is a single dimensional tensor.
@heller41965 жыл бұрын
4:30 LMAO
@deeplizard5 жыл бұрын
Hey Omkar - 🤣 Thanks for your comments!
@jacoblawrence11385 жыл бұрын
the sound you have added when typing the code i mean like a bhooo...... kind of sound is really annoying and it gets irritated when watching the videos for continuously. just take this as a suggestion from a viewer.
@deeplizard5 жыл бұрын
Thanks Jacob. Are you using headphones? Which ones?
@ennardzhao18715 жыл бұрын
stop putting scary clips into your tutorial videos!!!!