You got my respect man. I think this is the only video that actually cared enough to define what strong and weak learners are.
@CodeEmporium3 жыл бұрын
Thanks! Tried to get deep with this one
@SergioArroyoSailing4 жыл бұрын
Dude that was a fantastic explanation! and the video illustrations were excellent! and you really went over and above with the reference links for deeper studies! subscribed! keep up the good work! :D
@saharshayegan3 жыл бұрын
Exactly!
@CodeEmporium3 жыл бұрын
Sorry I'm super late to this. KZbin didn't notify me of this amazing comment. Thanks a ton! We can chat better on Discord since I'm more active there. Link in the latest video description
@denisjosephbarrow83303 жыл бұрын
Thanks Mr. Code Emporium you are as good as 3 blue one brown at explaining the difficult.
@mavichovizana54602 жыл бұрын
What a great explanation and fantastic work! Appreciated those references!
@Robay1463 жыл бұрын
Great explanation. Had no idea what boosting was and this video just demystified the whole thing. Big up!
@somerset0062 жыл бұрын
Amazing quality of production! Appreciate your effort!
@ShashankData2 жыл бұрын
Great video! I'm using this to research for a video I'm working on now!
@CodeEmporium2 жыл бұрын
I am honored! Can’t wait to see it!
@flavialan45443 жыл бұрын
one of the BEST videos for this subject
@CodeEmporium3 жыл бұрын
Thank you so much!
@VietnamSteven Жыл бұрын
This is beautifully explained!
@drsandeepvm56222 жыл бұрын
Great simplified explanation 👍 Thanks 😊
@justin.c2492 жыл бұрын
Great Explanation!
@CodeEmporium2 жыл бұрын
Thanks so much! :)
@95Bloulou4 жыл бұрын
I like the format of "logistic regression - the math you should know" better, I think the intro here is a little bit long and I think the viewers of this video will know a bit about ML but are more interested in the details of boosting (speaking for myself at least) Thank you ! keep it up !
@CodeEmporium4 жыл бұрын
Yeah. I'm working on getting to the point much quicker. Thanks for the feedback!
@arief25ramadhan4 жыл бұрын
Thanks man. Great explanation as always. Wish you all the best!
@70ME3E4 жыл бұрын
crazy good quality video, thank you!
@aashishadhikari81443 жыл бұрын
You did not explain why increasing the sample weight makes the next iteration focus on the misclassified samples.
@pankajshinde4755 жыл бұрын
Sir, just one question.... where you learn maths behind the machine learning algorithms... I am trying really hard to find courses about mathematics but i failed.... Where i can find resources to learn mathematics behind machine learning algorithms...
@last_theorem4 жыл бұрын
there is a channel called statquest you can have some decent idea math in that. MIT has a fab course called Artificial Intelligence by Patrick wilson they introduce you to some math there. And there are lot of medium articles where you can see the math. You will have to dig some more deeper. Machine learning algos are not built on one single ideas. Like in decision tree and even in ada boost you have an idea called gini score and all . Its a measure of entropy . And entropy is a information theory based ideas. Librarys are the most easiest way to approach this if you start understanding the math then there are lot of dependency. Also a decent idea of statistics , propablity , calculus can help you understand the ideas better. Because this algos are built on top of it.
@70ME3E4 жыл бұрын
I think Andrew Ng's ML videos might come handy too
@rajuofficial42052 жыл бұрын
Very nice
@SivaranjanGoswami2 жыл бұрын
Awesome explanation 👏 👌
@satyamtripathi17323 жыл бұрын
why it select weak model suppose if I get 95% accuracy in first model and its is selection weak model that is having 65% accuracy why?
@healthdatascience65772 жыл бұрын
Thanks! This is helpful.
@nurkleblurker24823 жыл бұрын
But how does a model "focus more on a problem to make sure it gets it right"? What does that mean?
@hassanrevel2 жыл бұрын
What an amazing video.
@ILoveMattBellamy3 жыл бұрын
Amazing video!
@CodeEmporium3 жыл бұрын
Thanks!
@falak883 жыл бұрын
So freaking amazing!
@TawhidShahrior2 жыл бұрын
thank you man, this was amazing.
@latinavenger74724 жыл бұрын
Hi, stupid question, but how you find the research papers exactly because they're such great! Thx for the gorgeous explanation, helped me a lot!
@CodeEmporium4 жыл бұрын
That's a good question. If I know the topic I'm looking for, I'd just Google it (like Xgboost). For "history" of boosting though, I'd also try to find college lecture material. They have a good explanation at a high level, but I'd dig into their references for more info. Apart from that there is arxiv sanity and social media that I use for more trending research (explained this more in my video on "how to keep up with AI research. Check it out)
@ahmedoumar37413 жыл бұрын
This video is GREAT!
@CodeEmporium3 жыл бұрын
you are GREAT!
@Kevin-fp6gk3 жыл бұрын
Which program do you use to create the videos?
@danishnawaz78695 жыл бұрын
Thank you 🙏
@anissalhi54593 жыл бұрын
great explanation thanks bro
@Klimaexperte4 жыл бұрын
So great, thanks man!
@yulinliu8505 жыл бұрын
Excellent! Thanks!
@omolluska3 жыл бұрын
This has 558 likes and cat videos have millions of likes. The world is not a fair place!
@CodeEmporium3 жыл бұрын
A cruel world we live in :)
@Leibniz_285 жыл бұрын
Awesome, I will use XGboost for some classification problems. What's program do you use to make your videos? I would like to learn about it, but I don't have a clear path to learn those skills on Internet.
@CodeEmporium5 жыл бұрын
XGboost can also be used for regression too. Since the base weak learner is a decision tree. I use Camtasia studio for creating these videos. It's great for recording your screen. And if you play around long enough with it, you can create decent animations.
@Raven-bi3xn4 жыл бұрын
Who are you? Where were you all my life? You are amazing! Do you have Pateon?
@mohanakumaran58155 жыл бұрын
So finally u uploaded a video 😂 I like ur explanation very much
@CodeEmporium5 жыл бұрын
Yup. :) I'm trying a different approach with more visuals and easier explanations (without losing detail). So it took longer. I'd actually been working on this almost every day for the last month after work. Next step is to probably decrease the video length to make it more palatable (?) - not too sure. But will see how it goes. Thanks for the support! :)
@mberoakoko243 жыл бұрын
SUBSCRIBED!!!!!
@CodeEmporium3 жыл бұрын
NO REGRETS! THENKS!
@LunaMarlowe3272 жыл бұрын
nice
@davidnassau23 Жыл бұрын
You lost me when you didn't explain what a gradient is or how it differs from a weight. That made the rest unintelligible. I hope you can improve this.
@CodeEmporium Жыл бұрын
Yea. This video is from 4 years ago. I have definitely improved over time. But to answer your question in a nutshell. Weight = parameter, gradient = change in said parameter