The Kernel Trick - THE MATH YOU SHOULD KNOW!

  Рет қаралды 181,892

CodeEmporium

CodeEmporium

Күн бұрын

Пікірлер: 140
@CodeEmporium
@CodeEmporium 6 жыл бұрын
Going to make a video on SVM and how it uses this kernel trick. So if you want to understand the math behind one of the most common Machine learning Algorithms, *subscribe* to keep an eye out for it ;)
@pavan4651
@pavan4651 3 жыл бұрын
Few of my friends wanted to get into ML at some point, but when they realized ML is just maths they went back to web dev. I love math and your videos make me love ML even more. Keep up!
@achillesarmstrong9639
@achillesarmstrong9639 5 жыл бұрын
very good explanation. also in depth. Most other videos are just explaining without formula, which are too simple
@uforskammet
@uforskammet Жыл бұрын
Amazing! Elegant explanation.
@krishnasumanthmannala984
@krishnasumanthmannala984 5 жыл бұрын
I think at 2:50 the suffix to y and x should be i. Thank you for the great explanation.
@abhinav3037
@abhinav3037 4 ай бұрын
Amazing concept. it helped me a lot to learn the algorithm from the grass root level.
@harry5094
@harry5094 5 жыл бұрын
Damn Dude!!, you really deserve a lot more views and subscriptions.Keep doing the great work.
@CodeEmporium
@CodeEmporium 5 жыл бұрын
Thanks for the kind words homie!
@leif1075
@leif1075 4 жыл бұрын
@@CodeEmporium But polynomial regression is an example of a nonlinear function generally right? Unless itnjust has several linear variables..
@chaosido19
@chaosido19 Жыл бұрын
omg I watched plethora of videos and read so many articles trying to explain me what kernel method actually gains, and I finally understand not only conceptually but also down to the technical level
@CodeEmporium
@CodeEmporium Жыл бұрын
Haha I made this video so long ago I thought I explained it in a real complex way. That said, super glad this was helpful
@johnfinn9495
@johnfinn9495 4 жыл бұрын
At about 2:56 you need to explain to customers the logic here: w* is not the solution because alpha depends on w. Also, at about 4:16 you cancel K, although K is singular. At lest you need some discussions of the range and null space of the kernel.
@User-cv4ee
@User-cv4ee 3 жыл бұрын
I was wondering about how w* was the solution yet contained w in it. What is it supposed to be?
@ayushtankha413
@ayushtankha413 Жыл бұрын
why do we get the 1/lambda term after derivative in w* ?? @2:52
@mikel5264
@mikel5264 5 жыл бұрын
How to get the vector 'k' in the last slide?
@spiritmoon3457
@spiritmoon3457 10 ай бұрын
2:53 why after solve for w, you still have w in left and right parts of equation?
@msjber5870
@msjber5870 5 жыл бұрын
At 3:37, isn't the Kernel matrix K of size (m,m) rather than (m,n) since we do a dot product of every observation (from X1 to Xm) with every other one, so doing a square matrix (as you mentioned yourself just before), this gives a matrix K of size m * m, and not m * n unless I missed stgh. So the last element of the first row for instance should be Phi(X1)t * Phi(Xm), and not Phi(X1)t * Phi(Xn). Correct ?
@josephchong783
@josephchong783 4 жыл бұрын
i was wondering about this too. It should be m x m or at least he shouldve stated m = n. Annotations is really annoying when it is not explained
@Rafid_Ahmed101
@Rafid_Ahmed101 4 ай бұрын
Dhon buzhaiso vaya shei hoise 🔥🔥
@reubenridwan256
@reubenridwan256 4 ай бұрын
asolei vai dhon bujhaiche. Purai faul. ektar por ekta equation dekhaiteche baal valomoto explain o korenai.
@rajkundaliya7796
@rajkundaliya7796 2 жыл бұрын
Damn! Damn! Damn! Couldn't have been better. Thanks a lot! A lot! As simple as it can get!
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Thanks a lot!
@jamesfulton6981
@jamesfulton6981 6 жыл бұрын
I think there might be a mistake in your equation for alpha_n at ~3:08. The summation shouldn't be there
@CodeEmporium
@CodeEmporium 6 жыл бұрын
You're right. My bad. I'll pin your comment for now (until I you/someone else points out some more mistakes). Thanks for the heads up!
@ditke71
@ditke71 5 жыл бұрын
@@CodeEmporium Under summation everything should be indexed by i not by n, and the summation is ok.
@JI77469
@JI77469 Жыл бұрын
I understand data scientists might want to shy away from Hilbert spaces, but this stuff is so much clearer if you just use the Finite Representer Theorem to reformulate Ridge regression as a simple regression problem involving the kernel matrix K. :) Just my opinion.
@frankbreeze9895
@frankbreeze9895 4 жыл бұрын
Dear author, how can we obtain the w* at 2:58? Do we obtain it by setting the derivatives of J(w) to zero? Could you please explain it? Thanks.
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Yes. The idea is to find the weight vector that minimize the cost.
@frankbreeze9895
@frankbreeze9895 4 жыл бұрын
@@CodeEmporium Thank you very much for your reply.
@birdman8375
@birdman8375 2 жыл бұрын
@@CodeEmporium Can you so the same but now without regularization?
@ilyaskhan.1994
@ilyaskhan.1994 2 жыл бұрын
What kind of math is this vector calculus ?thanks
@hrizony7847
@hrizony7847 Жыл бұрын
sorry I don’t understand the last part. In prediction, how to calculate k(x)? Say we have all training points so that we have the K, but for testing point x what does it mean? Thanks for help bro
@lewiswesley66
@lewiswesley66 2 жыл бұрын
can someone explain the where the 1/lambda comes from in the derivative?
@darasingh8937
@darasingh8937 3 жыл бұрын
Thank you for your videos! I love the fact that you show equations.
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Glad you like my style
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Thank you :)
@T_rex-te3us
@T_rex-te3us Жыл бұрын
incredible explaination, thank you very much.
@CodeEmporium
@CodeEmporium Жыл бұрын
Thanks so much for watching and commenting! Glad it is useful
@987654321ABC1000
@987654321ABC1000 5 жыл бұрын
This video is awesome, thanks for the lecture!
@univuniveral9713
@univuniveral9713 4 жыл бұрын
I can't really get the difference between polynomial regression and nonlinear regression. Please can you help me with that?
@covariance5446
@covariance5446 3 жыл бұрын
You could probably answer that question without even knowledge of linear algebra or regression. After all, what is relationship between a polynomial function and a non-linear function? A non-linear function is simply any function that isn't of the form y = mx + b (or y-hat = b1x1 + b2x2 + ... bnxn for multiple linear regression). A polynomial function is of the form y = [polynomial expression here]. Recall that a polynomial expression is one that only involves terms of the form cx^n + cx^(n-1) + ... cx^0. Examples include a linear function, but also quadratics, cubics, and so forth. In short, a polynomial function can be linear (as in the case of y=mx+b) or non-linear (as in the case of, say, y = 3x^2 + x + 2. In linear regression, you are fitting a line to a data. In a non-linear regression, you are fitting a curve (and it would have to be a curve, not a line since it's *non-linear*) to a set of data. BUT that curve doesn't have to be polynomial in nature (though it certainly can be). Whether that curve is defined by a polynomial function (not of order 1) OR something else is up to the circumstance! It might, for example, be an exponential function or a sinusoidal one. Recall that neither of the latter are polynomial functions because they are not of the form y = c1x^n + c2x^(n-1) + ... cnx^0. Hope that was a satisfying answer!
@ekbastu
@ekbastu 4 жыл бұрын
Man you are a champion. Thank you very much.
@CodeEmporium
@CodeEmporium 4 жыл бұрын
I'd love to be one someday. Thanks a ton :)
@aspergale9836
@aspergale9836 4 жыл бұрын
Where does the $1/\lambda$ come from in the derivative at 2:47?
@rembautimes8808
@rembautimes8808 3 жыл бұрын
It is indeed an awesome video but viewers should have some background knowledge so that is easy to follow. What is nice is that ties in so many concepts in a single 7 min video. A good warm up video for those who have to go out and develop some code. I have resisted watching Code Emporium for a long time , now I'm a subscriber.
@CodeEmporium
@CodeEmporium 3 жыл бұрын
You're right. I made this video while in grad school. So it was meant to serve as a refresher to me before exams :) That's why it's a lil hard to follow. Maybe if i had my audience more in mind at the time, this video may have been more accessible
@beboaltemimiburhan1330
@beboaltemimiburhan1330 2 жыл бұрын
@@CodeEmporium ضص
@goldfishjy95
@goldfishjy95 3 жыл бұрын
what does w* represent? thank you
@rishabtomar9837
@rishabtomar9837 Жыл бұрын
It would be a great help to understand this better if can you please make a video that takes a dataset as a m samples and n features and how would we calculate this K matrix and use this for transforming the features.
@Ashrafzaman37
@Ashrafzaman37 4 жыл бұрын
Very nice presentation...like it.
@meloyang9326
@meloyang9326 4 жыл бұрын
Thank you a lot! It really soole my problems about kernal tricks as I felt extremely puzzled in our professor's lecture.
@slithermilo
@slithermilo 2 ай бұрын
can u rerecord this but say may-trix instead of mat-rix
@niteshkans
@niteshkans 10 ай бұрын
There are grand errors in the equations that you solved. But, yes the explanation is on point.
@prithviprakash1110
@prithviprakash1110 3 жыл бұрын
Great explanation.
@purvanyatyagi2494
@purvanyatyagi2494 4 жыл бұрын
can w use the same techniques with svm , as in svm we have to use the lagrangian to get to the dual form
@njmanikandan9408
@njmanikandan9408 3 жыл бұрын
can someone tell me what is gram matrix ?
@birdman8375
@birdman8375 2 жыл бұрын
Thats fine you make predictions without phi, but in order to make predictions you need to compute w*. In your kernelized version, you still need phi transpose, in addition to K, in order to estimate w*. Can you explain that better? How to get rid of phi transpose in the kernelized version of w*?
@JI77469
@JI77469 Жыл бұрын
He does this in the last section ("prediction"). You really want the actual prediction function y, and he shows the formula for it just in terms of K and not with phi floating around anywhere.
@vintonchen6210
@vintonchen6210 4 жыл бұрын
How did you solve for the optimal w* from J(w)? I'm new to matrix calculation, would be great if you can give an explanation. Thank you.
@Праведныймиротворец
@Праведныймиротворец 4 жыл бұрын
use Lagrange multiplier
@sourasekharbanerjee9018
@sourasekharbanerjee9018 5 жыл бұрын
at 6.33 how is it possible to shift "y" before the kernel matrix without transposing as compared to at 4.45
@pritamkhan4143
@pritamkhan4143 4 жыл бұрын
@CodeEmporium, its a genuine question. Please do reply.
@RichardBrautigan2
@RichardBrautigan2 3 жыл бұрын
Great Video. Thank you. However, there is a mistake at 6:30, y_pred = w'*phi(x) (w was phi'*(K+lambda)^-1*y ). Hence, w' = y'*(K+lambda)^-1*phi and y_pred = y'(K+lambda)^-1*phi*phi(x). But you wrote phi'*phi(x) and it's a inner product! It is not Kernel. phi is a nxm matrix, m can be infinite (phi' * phi > mxm covariance matrix and phi*phi' > n*n Kernel matrix) We know Kernel matrix. It cannot be infinetexinfinete dimensions. It should be nxn matrix. There is also a problem with the notation you wrote at 3:32. If phi = [phi(x1)' ; phi(x2)'; ... ; phi(xn)' ]nxm then, phi(x)*phi(x)' can be Kernel matrix as phi(x)' = [phi(x1) phi(x2) ... phi(xn)] and phi(x)*phi(x)' = [phi(x1)'phi(x1) phi(x1)'phi(x2) ... phi(x1)'phi(xn); ..... ; phi(xn)'phi(x1) phi(xn)phi(x2) ... phi(xn)phi(xn)]nxn. But you wrote m*n matrix at 3:32. This cannot be possible. if m is not equal to n, then it cannot be symmetric.
@RichardBrautigan2
@RichardBrautigan2 3 жыл бұрын
It is hard to explain this with plain text, sorry. In short, m is the number of dimensions and n is the number of samples. At 3:32 K is a mxn matrix. Then, K cannot be symmetric if m is not equal to n. K must be symmetric as you said. Hence, phi is nxm matrix and phi^T is a mxn matrix and phi*phi^T is a nxn matrix.
@CharlieChen-h2q
@CharlieChen-h2q Ай бұрын
@@RichardBrautigan2 your result coincides with my derivation and I believe the author's been messed up with dimensionality. Thank you so much for pointing these errors out.
@MSalem7777
@MSalem7777 4 жыл бұрын
Thank you! Great explanation.
@CodeEmporium
@CodeEmporium 4 жыл бұрын
Thanks for the compliments
@mikel5264
@mikel5264 5 жыл бұрын
Man, you are the best
@pratikdeoolwadikar5124
@pratikdeoolwadikar5124 4 жыл бұрын
Thanks a lot, that cleared many doubts !!
@sakshamsoni1869
@sakshamsoni1869 4 жыл бұрын
How is 𝜑^𝑇 𝜑 variance matrix ?
@ignasa007
@ignasa007 2 жыл бұрын
2:57 you mean \alpha_n = \frac{1}{\lambda} (y_n - w^T\phi(x_n)), without the \sum operator. Had me confused for a while.
@zoro8117
@zoro8117 Жыл бұрын
Dude thanks a lot ❤
@st0a
@st0a Жыл бұрын
But why did you write \sum_{n=1}^{N} ||w||^2 when there's no n term in that part of the ridge regression equation? Very confusing, to say the least....
@johnfinn9495
@johnfinn9495 4 жыл бұрын
I have a few related questions. First, the regression equations are overdetermined, i.e. the number N of data points is greater than the number M of basis functions, right? And this is why we need regularization (ridge regression, lambda>0), right? If N>M and K is NXN, it has rank (at most) M so K^{-1} does not exist, but (K+lambda I)^{-1} does. That is OK, and I suppose you can let lambda go to zero to minimize the amount of regularization. But then, if you use a Gaussian radial basis function, this is infinite dimensional (M goes to infinity), and the regularization is no longer needed. Does all this seem correct?
@JI77469
@JI77469 Жыл бұрын
If you go to the section on prediction, you'll see that the size of M (even if M = infinity) is irrelevant, and what's required is the inversion of K + lambda I, which is "just" inverting an N x N matrix. I don't think M has anything to do with the degree of overfitting. So yes even for a Gaussian kernel (when M = infinity) you still want to regularize.
@Manuel-tf7qc
@Manuel-tf7qc 5 жыл бұрын
Just to made myself clear with your development. In minute 4:13, is the symmetry of the Kernel Matrix (K = t(K)) that allows you to have [t(y)* K * alpha] instead of [t(alpha) * K * y]? where "t" is transpose.
@MrMaipeople
@MrMaipeople 5 жыл бұрын
Thank you so much for this excellent Video
@rishabhnandy38
@rishabhnandy38 4 жыл бұрын
can u please help me solving one problem on this topic
@JRAbduallah1986
@JRAbduallah1986 3 жыл бұрын
Thanks for uploading this video, having kernel trick to get around phi phi transpose is a good solution, however, at the end we have the inverse of K+lambda I which is a big matrix. Do you have any solution for that?
@JI77469
@JI77469 Жыл бұрын
To my knowledge the two practical methods that exist to avoid dealing with the often huge matrix K are "Random Features" and "Nystrom Method". But in general the huge matrix K and related issues (like inversion) are really why deep learning is often used when lots of data is available.
@birdman8375
@birdman8375 2 жыл бұрын
Can you make a video like this for simple linear regression without regularization?
@TheAkashkajal
@TheAkashkajal 6 жыл бұрын
Great Video
@sathyakumarn7619
@sathyakumarn7619 3 жыл бұрын
Good speed in video. But I should say perhaps it is a bit too under-detailed. Maybe, one should be able to get through if he went through all your videos. I would request for more details in derivations in future videos.
@keyangke
@keyangke 5 жыл бұрын
I think there might be a mistake in your equation for J(alhpa) at 3:21, should be J(w*) instead.
@tekingunasar4189
@tekingunasar4189 3 жыл бұрын
What is the point of the summations in minute three if you don't even use the index variable? Why y_n and x_n and not y_i and x_i? Also, would have been better if you credited the analytics vidhya article you took this information from (Same with your support vector machine video)
@shivamsisodiya9719
@shivamsisodiya9719 6 жыл бұрын
Please make more videos on GAN
@saeedmakki9923
@saeedmakki9923 4 жыл бұрын
Thanks a lot!
@sammykmfmaths7468
@sammykmfmaths7468 6 ай бұрын
Please the video margin Is truncated 😢😢
@faisalwho
@faisalwho 4 ай бұрын
I dislike that over emphasis on the transpose, because all it is a row dot column, orvs simple for operation.
@unknown-otter
@unknown-otter 5 жыл бұрын
Finally, I understood!
@brettgattinger3338
@brettgattinger3338 4 жыл бұрын
maaaaaatrix
@johndagdelen815
@johndagdelen815 4 жыл бұрын
Did you hire someone else to do the voice over for your video?
@danawen555
@danawen555 3 жыл бұрын
thanks!
@rrrprogram8667
@rrrprogram8667 5 жыл бұрын
Subscribed
@Leon-pn6rb
@Leon-pn6rb 5 жыл бұрын
still didnt get it ! ughhhhhhhh
@Trubripes
@Trubripes 8 ай бұрын
Dense but informative.
@devendraalawa4173
@devendraalawa4173 4 жыл бұрын
कोष थिता nhi aayega bro
@vtrandal
@vtrandal 3 жыл бұрын
Maahtrix? It may not all be one world, but it does overlap. Matrix!
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Math Trix
@vtrandal
@vtrandal 2 жыл бұрын
@@CodeEmporium I am glad you have a sense of humor.
@ahmad3823
@ahmad3823 Жыл бұрын
several typos for sure but good video!
@CodeEmporium
@CodeEmporium Жыл бұрын
Yea. I have tried to get better about this over the years. Thanks for watching!
@a741987
@a741987 6 жыл бұрын
Damn this is so beatiful
@CodeEmporium
@CodeEmporium 6 жыл бұрын
Thanks! ;)
@amitupadhyay6511
@amitupadhyay6511 4 жыл бұрын
hey, make it easy, we came here to understand it easily, not hard, damm it
@joaquingiorgi5809
@joaquingiorgi5809 Жыл бұрын
What a fuck boy way to say maatrix 😂, great video though
@redberries8039
@redberries8039 6 жыл бұрын
..but do I need to know that math to apply kernalisation? Really do I?
@keyangke
@keyangke 5 жыл бұрын
from sklearn.kernel_ridge import KernelRidge
@lglgunlock
@lglgunlock 3 жыл бұрын
Wrong equations confuse people, pls correct it
@resitk7272
@resitk7272 6 жыл бұрын
This is amazing but, there are the errors I'm getting implementing this into python :( Anyone one could help?
@devendraalawa4173
@devendraalawa4173 4 жыл бұрын
Aayega
@spherinder5793
@spherinder5793 9 ай бұрын
mattrix
@techsavy5669
@techsavy5669 3 жыл бұрын
i am even more confused now.
@stephensanders9319
@stephensanders9319 3 жыл бұрын
user name does not check out.
@piyushjaininventor
@piyushjaininventor Жыл бұрын
perfect definition of How Not To Teach Machine Learning Concepts.
@choubro2
@choubro2 2 жыл бұрын
bro is the mahtrix contrarian
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Mathy trix
@watsufizzi
@watsufizzi 3 жыл бұрын
sooooo, nobody is going to mention the ridiculous pronunciation of the word "matrix"?
@CodeEmporium
@CodeEmporium 3 жыл бұрын
Mathtrix
@devendraalawa4173
@devendraalawa4173 4 жыл бұрын
Going to riding fhor fhirsht vi teck no
@zacharybaca6276
@zacharybaca6276 5 ай бұрын
mAAtrix
@sameure6486
@sameure6486 5 жыл бұрын
You're pronouncing "matrix" incorrectly.
@MrCmon113
@MrCmon113 5 жыл бұрын
No, you are, because of the vowel shift in the English language. A German person, for example, would pronounce it as he does.
@PS-eu6qk
@PS-eu6qk 4 жыл бұрын
who gives a f**k. you pronounce chicago as "shikago" and chimes as chimes. there are many other stupidity filled in this language.
@kaustubhkeny1140
@kaustubhkeny1140 3 жыл бұрын
Bouncer.
@devendraalawa4173
@devendraalawa4173 4 жыл бұрын
Galt he
@Seff2
@Seff2 4 жыл бұрын
2 minutes in and understood absolutely nothing. waste of time
@sally1917
@sally1917 3 жыл бұрын
maybe you need some prior course
@harishr5620
@harishr5620 5 жыл бұрын
You are just news reading the topic not teaching..-_-
@dariosilva85
@dariosilva85 5 жыл бұрын
Matrix is pronounced May-Trix.
@CodeEmporium
@CodeEmporium 5 жыл бұрын
I'm partly from India andthe states, so my pronunciations and metrics are all over the place. Ill be more consistent
@PS-eu6qk
@PS-eu6qk 4 жыл бұрын
What does it matter you idiot. Why is chicago pronounced as "shikago" and chimes as chimes. English is a faulty language. No wonder why NASA scientists researched that english as a language is not suitable for artificial intelligence-nlp but Sanskrit is.
@PS-eu6qk
@PS-eu6qk 4 жыл бұрын
@@CodeEmporium this really annoys me of these native english speaker picking up on non native english speakers.you dont need to justify how you say a matrix. Can native english speakers or any other native language speakers pronounce indian languages like Sanskrit and/or tamil properly? off course not. dont be apologetic.
@PS-eu6qk
@PS-eu6qk 4 жыл бұрын
how do you justify magic pronounced as "may-gic" and matrix as "matrix"
@eskedarayele4430
@eskedarayele4430 2 жыл бұрын
Oh my God thank you. I always find it hard to pronounced it easily.
@ejomaumambala5984
@ejomaumambala5984 4 жыл бұрын
Too many gross math mistakes (some of them pointed out in other comments). You need to read more/better material. Please don't post any more misleading and incorrect videos.
@victorzurkowski2388
@victorzurkowski2388 2 жыл бұрын
Why not pronouncing "/ˈmātriks/"????
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Cuz phonics and I never got along. I have wartime flashbacks from the 3rd grade
Support Vector Machines - THE MATH YOU  SHOULD KNOW
11:21
CodeEmporium
Рет қаралды 142 М.
Support Vector Machines Part 1 (of 3): Main Ideas!!!
20:32
StatQuest with Josh Starmer
Рет қаралды 1,4 МЛН
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Regularization Part 1: Ridge (L2) Regression
20:27
StatQuest with Josh Starmer
Рет қаралды 1,1 МЛН
Reproducing Kernels and Functionals (Theory of Machine Learning)
21:43
Calculating the kernel of a matrix - An example
9:03
The Bright Side of Mathematics
Рет қаралды 251 М.
SVM10 The Kernel Trick (Part1: Basis Expansion)
16:06
Zardoua Yassir
Рет қаралды 22 М.
Support Vector Machines: All you need to know!
14:58
Intuitive Machine Learning
Рет қаралды 168 М.
16. Learning: Support Vector Machines
49:34
MIT OpenCourseWare
Рет қаралды 2 МЛН
Logistic Regression - THE MATH YOU SHOULD KNOW!
9:14
CodeEmporium
Рет қаралды 158 М.
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН