your channel is highly underrated, it deserves a lot more audience
@MachineLearningWithJay Жыл бұрын
Thank you for this considerate comment 😇
@RajeswariThiyagarajan-d3k Жыл бұрын
thankyou so much for uploading these videos, your explanations are easily understandable
@vishalchandra14502 жыл бұрын
Hand's down,best explanation ever:)
@MachineLearningWithJay2 жыл бұрын
Haha… Thanks you so much 😄
@himtyagi97403 жыл бұрын
waiting for SVM since you explain so nicely..thnks
@MachineLearningWithJay3 жыл бұрын
Thank you! I will upload SVM video after finishing RNN series
@Vinay1923 жыл бұрын
Hi Sir, any plan of uploading videos on support vector machines? If yes then, please try to cover the mathematical background of SVM as much as you can ... Anyway your content is really appreciable...Thanks !
@MachineLearningWithJay3 жыл бұрын
Thank you so much for your suggestion! Yes, I will be making video on SVM and covering mathematical details behind it.
@KorobkaAl2 жыл бұрын
You are the best, thanks dude 🤙
@MachineLearningWithJay2 жыл бұрын
You’re welcome 😇
@jyotsanaj1425 Жыл бұрын
Such clear explanation
@Maciek17PL2 жыл бұрын
If situation with w and b would be opposite values of gradients on the vertical axis were small and values on horizontal axis where large would RMSprop slow down the training by making vertical axis values larger and horizontal axis values smaller?
@MachineLearningWithJay2 жыл бұрын
No no… it will still make the training faster. Vertical horizontal is just an example i am giving. Realistically, it can be in any direction. In every direction, its gonna work the same way.
@ueslijtety2 жыл бұрын
Hi,Is it correct that you set the vertical coordinates to w and the horizontal coordinates to b? I think it should be the other way around.Because whether the goal can be reached in the end depends on w rather than b.
@MachineLearningWithJay2 жыл бұрын
Hi… neither we set vertical to w nor b. Its just an example given… in a model.. there are many axis, not just x and y if we have more than 2 number of features. So a model can take any axis as any w or b. and it doesn’t matter as well which axis is for waht
@ueslijtety2 жыл бұрын
@@MachineLearningWithJay thanks!So in practice this is not going to be a 2D planar image but a multidimensional image?And which parameters can determine the point of convergence in gradient descent?W OR b?
@minister1005 Жыл бұрын
So i guess what he means is that if you get a high gradient, you will be updated a lower amount and if you get a low gradient, you will be updated a higher amount.
@marccasals63663 жыл бұрын
You're incredible
@MachineLearningWithJay3 жыл бұрын
Thank You Marc! Glad you found my videos valuable.
@christopherwashington94482 жыл бұрын
Hello thanks for the info. But you didn't mention the purpose of the square for the gradient.
@MrMadmaggot2 жыл бұрын
Man and what kind of LOSS should I use when training using RMSprop optimizer?